[1] Xu Wennian, Ye Jianjun, Zhou Mingtao, et al. Several problems of vegetation technology for protecting slopes using vegetation-growing concrete[J]. Water Resources and Hydropower Engineering, 2004, 35(10):50-52.[许文年, 叶建军, 周明涛, 等. 植被混凝土护坡绿化技术若干问题探讨[J]. 水利水电技术, 2004, 35(10):50-52.] [2] Xu Wennian, Xia Zhenyao, Zhou Mingtao, et al. Theory and practice for eco-restoration of vegetation concrete[M]. Beijing:China Water and Power Press, 2012.[许文年, 夏振尧, 周明涛, 等. 植被混凝土生态防护技术理论与实践[M]. 北京:中国水利水电出版社, 2012.] [3] Ding Yu, Hu Wenjing, Xia Zhenyao, et al. Soil fertility dynamics of substrate used for ecological slope protection[J]. Journal of Hydroecology, 2017, 38(2):31-37.[丁瑜, 胡文静, 夏振尧, 等. 生态护坡生境基材土壤肥力动态变化研究[J]. 水生态学杂志, 2017, 38(2):31-37.] [4] Zhao Bingqin, Xia Zhenyao, Xu Wennian, et al. Review on research of slope eco-restoration technique for engineering disturbed area[J]. Water Resources and Hydropower Engineering, 2017, 48(2):130-137.[赵冰琴, 夏振尧, 许文年, 等. 工程扰动区边坡生态修复技术研究综述[J]. 水利水电技术, 2017, 48(2):130-137.] [5] Gao Min, Li Yanxia, Zhang Xuelian, et al. Influence of freeze-thaw process on soil physical, chemical and biological properties:a review[J]. Journal of Agro-Environment Science, 2016, 35(12):2269-2274.[高敏, 李艳霞, 张雪莲, 等. 冻融过程对土壤物理化学及生物学性质的影响研究及展望[J]. 农业环境科学学报, 2016, 35(12):2269-2274.] [6] Dong Kang, Li Shiweng, Kang Wenlong, et al. Study of the changes in microbe amount and its affect factors in the soils along the Qinghai-Tibet Highway[J]. Journal of Glaciology and Geocryology, 2013, 35(2):457-464.[董康, 李师翁, 康文龙, 等. 青藏公路沿线土壤微生物数量变化及其影响因素研究[J]. 冰川冻土, 2013, 35(2):457-464.] [7] Jiang Jing, Song Minghua. Review of the roles of plants and soil microorganisms in regulating ecosystem nutrient cycling[J]. Chinese Journal of Plant Ecology, 2010, 34(8):979-988.[蒋婧, 宋明华. 植物与土壤微生物在调控生态系统养分循环中的作用[J]. 植物生态学报, 2010, 34(8):979-988.] [8] He Zhenli. Soil microbial biomass and its significance in nutrient cycling and environmental quality assessment[J]. Soils, 1997(2):61-69.[何振立. 土壤微生物量及其在养分循环和环境质量评价中的意义[J]. 土壤, 1997(2):61-69.] [9] Lü Yizhong. Edaphology[M]. Beijing:China Agriculture Press, 2006.[吕贻忠. 土壤学[M]. 北京:中国农业出版社, 2006.] [10] Wang Jiaoyue, Song Changchun, Wang Xianwei, et al. Progress in the study of effect of freeze-thaw processes on the organic carbon pool and microorganisms in soils[J]. Journal of Glaciology and Geocryology, 2011, 33(2):442-452.[王娇月, 宋长春, 王宪伟, 等. 冻融作用对土壤有机碳库及微生物的影响研究进展[J]. 冰川冻土, 2011, 33(2):442-452.] [11] Larsen K S, Jonasson S, Michelsen A. Repeated freeze-thaw cycles and their effects on biological processes in two arctic ecosystem types[J]. Applied Soil Ecology, 2002, 21(3):187-195. [12] Wang Aifang, Cheng Binghua, ZhuangYifan, et al. Isolation and cultivation of soil microorganisms[J]. Guide of Sci-tech Magazine, 2015(14):64.[王爱芳, 程冰华, 庄依凡, 等. 土壤微生物的分离培养[J]. 科技致富向导, 2015(14):64.] [13] Wang Yongqi, Wang Shougang, Shen Alin, et al. Preliminary identification of strains after the separation and purification of nitrogen-fixing bacteria[J]. Journal of Henan Agricultural Sciences, 2004, 33(4):46-49.[王永歧, 王守刚, 沈阿林, 等. 固氮菌分离纯化后菌株的初步鉴别[J]. 河南农业科学, 2004, 33(4):46-49.] [14] Xu Wensi, Jiang Ying, Li Yin, et al. Isolation, identification of plant growth-promoting bacteria and its promoting effects on peanuts[J]. Soils, 2014, 46(1):119-125.[徐文思, 姜瑛, 李引, 等. 一株植物促生菌的筛选、鉴定及其对花生的促生效应研究[J]. 土壤, 2014, 46(1):119-125.] [15] Tang Peng, Hu Jiapin, Yi Langbo, et al. Isolation and phylogenetic analysis of potassium-solubilizing bacteria[J]. Chinese Journal of Microecology, 2015, 27(2):125-129.[汤鹏, 胡佳频, 易浪波, 等. 钾长石矿区土壤解钾菌的分离与多样性[J]. 中国微生态学杂志, 2015, 27(2):125-129.] [16] Zhou Deqing. Microbiology experiment[M]. Beijing:Higher Education Press, 2013.[周德庆. 微生物学实验教程[M]. 北京:高等教育出版社, 2013.] [17] Yan Jun, Han Xiaozeng, Wang Shuqi, et al. Effects of different nitrogen forms on microbial quantity and enzymes activities in soybean field[J]. Plant Nutrition and Fertilizer Science, 2010, 16(2):341-347.[严君, 韩晓增, 王树起, 等. 不同形态氮素对种植大豆土壤中微生物数量及酶活性的影响[J]. 植物营养与肥料学报, 2010, 16(2):341-347.] [18] Chen Yongliang, Chen Baodong, Liu Lei, et al. The role of arbuscular mycorrhizal fungi in soil nitrogen cycling[J]. Acta Ecologica Sinica, 2014, 34(17):4807-4815.[陈永亮, 陈保冬, 刘蕾, 等. 丛枝菌根真菌在土壤氮素循环中的作用[J]. 生态学报, 2014, 34(17):4807-4815.] [19] Jin Shuchao, Du Chunmei, Ping Wenxiang, et al. Advance in phosphorus-dissolving microbes[J]. Journal of Microbiology, 2006, 26(2):73-78.[金术超, 杜春梅, 平文祥, 等. 解磷微生物的研究进展[J]. 微生物学杂志, 2006, 26(2):73-78.] [20] He Linyan, Sheng Xiafang, Lu Guangxiang, et al. Physiological and biochemical characteristics of silicate-dissolving bacteria in different soils and their capacities of releasing potassium[J]. Soils, 2004, 36(4):434-437.[何琳燕, 盛下放, 陆光祥, 等. 不同土壤中硅酸盐细菌生理生化特征及其解钾活性的研究[J]. 土壤, 2004, 36(4):434-437.] [21] Schimel J P, Clein J S. Microbial response to freeze-thaw cycles in tundra and taiga soils[J]. Soil Biology and Biochemistry, 1996, 28(8):1061-1066. [22] Skogland T, Lomeland S, Goks yr J. Respiratory burst after freezing and thawing of soil:experiments with soil bacteria[J]. Soil Biology and Biochemistry, 1988, 20(6):851-856. [23] Walker V K, Palmer G R, Voordouw G. Freeze-thaw tolerance and clues to the winter survival of a soil community[J]. Applied and Environmental Microbiology, 2006, 72(3):1784-1792. [24] Wu Bin, Xia Zhenyao, Zhao Juan, et al. Responses of microbial activities in vegetation-concrete substrate to different cement contents[J]. Bulletin of Soil and Water Conservation, 2014, 34(3):6-9.[吴彬, 夏振尧, 赵娟, 等. 植被混凝土基材微生物活性对不同水泥含量的响应[J]. 水土保持通报, 2014, 34(3):6-9.] [25] Zhang Dilong, Zhang Haitao, Han Xu, et al. Effects of freeze-thaw cycles on the release of nitrogen and phosphorus in various depth of soil[J]. Water Saving Irrigation, 2015(1):36-42.[张迪龙, 张海涛, 韩旭, 等. 冻融循环作用对不同深度土壤各形态氮磷释放的影响[J]. 节水灌溉, 2015(1):36-42.] [26] Jia Xia, Dong Suiming, Zhou Chunjuan. Effects of Biolog Eco-plates incubation time on analysis results in microbial ecology researches[J]. Journal of Basic Science and Engineering, 2013, 21(1):10-19.[贾夏, 董岁明, 周春娟. 微生物生态研究中Biolog Eco微平板培养时间对分析结果的影响[J]. 应用基础与工程科学学报, 2013, 21(1):10-19.] [27] Xu Jian, Li Chengyu, Wang Zhangquan, et al. Experimental analysis on the mechanism of shear strength deterioration of undisturbed loess during the freeze-thaw process[J]. Journal of Civil, Architectural & Environmental Engineering, 2016, 38(5):90-98.[许健, 李诚钰, 王掌权, 等. 原状黄土冻融过程抗剪强度劣化机理试验分析[J]. 土木建筑与环境工程, 2016, 38(5):90-98.] [28] Yang Sizhong, Jin Huijun. Physiological and ecological effects of freezing and thawing processes on microorganisms in seasonally froze ground and in permafrost[J]. Acta Ecologica Sinica, 2008, 28(10):5065-5074.[杨思忠, 金会军. 冻融作用对冻土区微生物生理和生态的影响[J]. 生态学报, 2008, 28(10):5065-5074.] [29] Zhang Baogui, Zhang Wei, Liu Guangxiu, et al. Effect of freeze-thaw cycles on the soil bacterial communities in different ecosystem soils in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2012, 34(6):1499-1507.[张宝贵, 张威, 刘光琇, 等. 冻融循环对青藏高原腹地不同生态系统土壤细菌群落结构的影响[J]. 冰川冻土, 2012, 34(6):1499-1507.] [30] Klose S, Acosta-Martínez V, Ajwa H A. Microbial community composition and enzyme activities in a sandy loam soil after fumigation with methyl bromide or alternative biocides[J]. Soil Biology and Biochemistry, 2006, 38(6):1243-1254. |