[1] Koster R D, Dirmeyer P A, Guo Z, et al. Regions of strong coupling between soil moisture and precipitation[J]. Science, 2004, 305(5687):1138-1140. [2] Koster R D, Suarez M J, Higgins R W, et al. Observational evidence that soil moisture variations affect precipitation[J]. Geophysical Research Letters, 2003, 30(5):1-4. [3] Hanson J D, Ahuja L R, Shaffer M D, et al. RZWQM:simulating the effects of management on water quality and crop production[J]. Agricultural Systems, 1998, 57(2):161-195. [4] Lü Haishen, Yu Zhongbo, Horton R, et al. Multi-scale assimilation of root zone soil water predictions[J]. Hydrological Processes, 2011, 25(20):3158-3172. [5] Fu Xiaolei, Yu Zhongbo, Luo Lifeng, et al. Investigating soil moisture sensitivity to precipitation and evapotranspiration errors using SiB2 model and ensemble Kalman filter[J]. Stochastic Environmental Research and Risk Assessment, 2014, 28(3):681-693. [6] Lai Xin, Wen Jun, Cen Sixian, et al. Numerical simulation and evaluation study of soil moisture over China by using CLM4.0 model[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(3):499-512.[赖欣, 文军, 岑思弦, 等. CLM4.0模式对中国区域土壤湿度的数值模拟及评估研究[J]. 大气科学, 2014, 38(3):499-512.] [7] Zhao Long, Yang Kun, Qin Jun, et al. The scale-dependence of SMOS soil moisture accuracy and its improvement through land data assimilation in the central Tibetan Plateau[J]. Remote Sensing of Environment, 2014, 152:345-355. [8] Xi Jiaju, Wen Jun, Tian Hui, et al. Applicability evaluation of AMSR-E remote sensing soil moisture products in Qinghai-Tibet Plateau[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(13):194-202.[席家驹, 文军, 田辉, 等. AMSR-E遥感土壤湿度产品在青藏高原地区的适用性[J]. 农业工程学报, 2014, 30(13):194-202.] [9] Liu Huolin, Hu Zeyong, Cheng Si, et al. Simulation of the land surface processes over the central Tibetan Plateau based on Noah-LSM and CoLM[J]. Journal of Glaciology and Geocryology, 2016, 38(6):1501-1509.[刘火霖, 胡泽勇, 程思, 等. 基于Noah-LSM模式和CoLM模式的青藏高原中部陆面过程模拟[J]. 冰川冻土, 2016, 38(6):1501-1509.] [10] Peters-Lidard C D, Zion M S, Wood E F. A soil-vegetation-atmosphere transfer scheme for modeling spatially variable water and energy balance process[J]. Journal of Geophysical Research, 1997, 102(D4):4303-4324. [11] He Siwei, Nan Zhuotong, Zhang Ling, et al. Spatial-temporal distribution of water and energy fluxes in the upper reaches of the Heihe River simulated with VIC model[J]. Journal of Glaciology and Geocryology, 2015, 37(1):211-225.[何思为, 南卓铜, 张凌, 等. 用VIC模型模拟黑河上游流域水分和能量通量的时空分布[J]. 冰川冻土, 2015, 37(1):211-225.] [12] Li Xin, Huang Chunlin, Che Tao, et al. Development of a Chinese land data assimilation system:its progress and prospects[J]. Progress in Natural Science, 2007, 17(2):163-173.[李新, 黄春林, 车涛, 等. 中国陆面数据同化系统研究的进展与前瞻[J]. 自然科学进展, 2007, 17(2):163-173.] [13] Li Xin, Bai Yulong. A Bayes filter framework for sequential data assimilation[J]. Advances in Earth Science, 2010, 25(5):515-522.[李新, 摆玉龙. 顺序数据同化的Bayes滤波框架[J]. 地球科学进展, 2010, 25(5):515-522.] [14] National Research Council. Four-dimensional model assimilation of data:a strategy for the earth system sciences[M]. Washington D C:National Academies Press, 1991. [15] Huang Chunlin, Li Xin, Lu Ling, et al. Experiments of one-dimensional soil moisture assimilation system based on ensemble Kalman filter[J]. Remote Sensing of Environment, 2008, 112(3):888-900. [16] Han Xujun, Li Xin. An evaluation of the nonlinear/non-Gaussian filters for the sequential data assimilation[J]. Remote Sensing of Environment, 2008, 112(4):1434-1449. [17] Lievens L, De Lannoy G J M, Bitar A A, et al. Assimilation of SMOS soil moisture and brightness temperature products into a land surface model[J]. Remote Sensing of Environment, 2016, 180:292-304. [18] Han Shuai, Shi Chunxiang, Lin Hongjin, et al. The CLDAS soil moisture operation products applied to monitor soil drought[J]. Journal of Glaciology and Geocryology, 2015, 37(2):446-453.[韩帅, 师春香, 林泓锦, 等. CLDAS土壤湿度业务产品的干旱监测应用[J]. 冰川冻土, 2015, 37(2):446-453.] [19] Chu Nan, Huang Chunlin, Du Peijun. Ensemble Kalman smoother for soil moisture data assimilation[J]. Advances in Water Science, 2015, 26(2):243-249.[褚楠, 黄春林, 杜培军. 基于集合卡尔曼平滑算法的土壤水分同化[J]. 水科学进展. 2015, 26(2):243-249.] [20] Montaldo N, Albertson J D, Mancini M. Dynamic calibration with an ensemble Kalman filter based data assimilation approach for root zone moisture predictions[J]. Journal of Hydrometeorology, 2007, 8:910-921. [21] Sellers P J, Randall D A, Collatz G J, et al. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part 1:model formulation[J]. Journal of Climate, 1996, 9:676-705. [22] Yu Zhongbo, Fu Xiaolei, Luo Lifeng, et al. One-dimensional soil temperature simulation with Common Land Model by assimilating in situ observations and MODIS LST with the ensemble particle filter[J]. Water Resources Research, 2014, 50:6950-6965. [23] Weerts A H, El Serafy G Y H. Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall-runoff models[J]. Water Resources Research, 2006, 42(W09403):1-17. [24] Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE Aerospace and Electronic Systems, 2004, 92(3):410-422. [25] Van der Merwe R. Sigma-point Kalman filters for probalistic inference in dynamic state-space models[D]. Portland:Oregon Health and Science University, 2004. [26] Liu Hongwei, Gao Fei, Yu Zhongbo, et al. Study on temporal-spatial variability of soil moisture content on hillslope in a humid area[J]. Water Resources Protection, 2016, 32(5):17-23.[刘宏伟, 高菲, 余钟波, 等. 湿润地区坡面土壤含水率时空变异性研究[J]. 水资源保护, 2016, 32(5):17-23.] |