[1] Yao Tandong, Thompson L, Yang Wei, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9):663-667. [2] Liu Shiyin, Yao Xiaojun, Guo Wanqin, et al. The contemporary glaciers in China based on the Second Chinese Glacier Inventory[J]. Acta Geographica Sinica, 2015, 70(1):3-16.[刘时银, 姚晓军, 郭万钦, 等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015, 70(1):3-16.] [3] IPCC. Climate Change 2013:The physical science basis[M]. Cambridge:Cambridge University Press, 2013. [4] Ke L, Ding X, Song C. Heterogeneous changes of glaciers over the western Kunlun Mountains based on ICESat and Landsat-8 derived glacier inventory[J]. Remote Sensing of Environment, 2015, 168:13-23. [5] Kordzakhia G, Shengelia L, Tvauri G, et al. Satellite remote sensing outputs of the certain glaciers on the territory of East Georgia[J]. Egyptian Journal of Remote Sensing & Space Sciences, 2015, 18(1):1-7. [6] Liu T, Kinouchi T, Ledezma F. Characterization of recent glacier decline in the Cordillera Real by LANDSAT, ALOS, and ASTER data[J]. Remote Sensing of Environment, 2013, 137(10):158-172. [7] Yavaşlh D D, Tucker C J, Melocik K A. Change in the glacier extent in Turkey during the Landsat Era[J]. Remote Sensing of Environment, 2015, 163:32-41. [8] Kraaijenbrink P D A, Shea J M, Pellicciotti F, et al. Object-based analysis of unmanned aerial vehicle imagery to map and characterise surface features on a debris-covered glacier[J]. Remote Sensing of Environment, 2016, 186:581-595. [9] Han H, Lee H. Tide deflection of Campbell Glacier Tongue, Antarctica, analyzed by double-differential SAR interferometry and finite element method[J]. Remote Sensing of Environment, 2014, 141(2):201-213. [10] Solberg S, Astrup R, Breidenbach J, et al. Monitoring spruce volume and biomass with InSAR data from TanDEM-X[J]. Remote Sensing of Environment, 2013, 139(12):60-67. [11] Zhou Jianmin, Li Zhen, Xing Qiang. Deriving glacier border information based on analysis of decorrelation in SAR interferometry[J]. Journal of Glaciology and Geocryology, 2010, 32(1):133-138.[周建民, 李震, 邢强. 基于雷达干涉失相干特性提取冰川边界方法研究[J]. 冰川冻土, 2010, 32(1):133-138.] [12] Zhang Qiang, Liu Yi, Blumc R S, et al. Sparse representation based multi-sensor image fusion for multi-focus and multi-modality images:a review[J]. Information Fusion, 2018, 40:57-75. [13] Ghassemian H. A review of remote sensing image fusion methods[J]. Information Fusion, 2016, 32:75-89. [14] Su Zhen, Xie Zichu, Wang Zhichao. Glaciers and Their Environments in Karakoram and Kunlun Mountains[M]. Beijing:Science Press, 1998.[苏珍, 谢自楚, 王志超. 喀喇昆仑山-昆仑山地区冰川与环境[M]. 北京:科学出版社, 1998.] [15] Zhang Wen. Research on Glacier Extraction Methods based on Multi-source Remote Sensing Data[D]. Lanzhou:Lanzhou Jiaotong University, 2016.[张雯. 基于多源遥感数据的冰川信息提取方法研究[D]. 兰州:兰州交通大学, 2016.] [16] Zhang Wen. Study of extracting glacier information by variety remote sensing:a case study in chongce glacial area[J]. Geomatics and Spatial Information Technology, 2016, 39(11):175-178.[张雯. 基于遥感的冰川信息提取方法探讨——以崇测冰川地区为例[J]. 测绘与空间地理信息, 2016, 39(11):175-178.] [17] Ye Qinghua, Chen Feng, Yao Tandong, et al. Tupu of glacier variations in the Mt. Naimona'Nyi region, western Himalayas, in the last three decades[J]. Journal of Remote Sensing, 2007, 11(4):512-520.[叶庆华, 陈锋, 姚檀栋. 近30 a来喜马拉雅山脉西段纳木那尼峰地区冰川变化的遥感监测研究[J]. 遥感学报, 2007, 11(4):512-520.] [18] Shangguan Donghui, Liu Shiyin, Ding Yongjian, et al. Glacier changes at the head of Yurungkax River in the west Kunlun Mountains in the past 32 years[J]. Acta Geographica Sinica, 2004, 59(6):855-862.[上官冬辉, 刘时银, 丁永建, 等. 玉龙喀什河源区32年来冰川变化遥感监测[J].地理学报, 2004, 59(6):855-862.] [19] Zhang Jiping, Liu Linshan, Zhang Yili, et al. Object-oriented information extraction of water bodies and glaciers in extreme high altitude area:a case study of the core area of Mt.Qomolangma (Everest) National Nature Preserve[J]. Journal of Geo-Information Science, 2010, 12(4):517-523.[张继平, 刘林山, 张镱锂, 等. 面向对象的极高海拔区水体及冰川信息提取——以珠穆朗玛峰国家级自然保护区核心区为例[J]. 地球信息科学学报, 2010, 12(4):517-523.] [20] Yan Donghai, Li Zhongqin, Gao Wenyu, et al. RS-based monitoring of glacier change in the Beidahe River basin in the Qilian Mountains[J]. Arid Zone Research, 2012, 29(2):245-250.[颜东海, 李忠勤, 高闻宇, 等. 祁连山北大河流域冰川变化遥感监测[J]. 干旱区研究, 2012, 29(2):245-250.] [21] Zeng Lingfang, Li Lin, Wan Lihua. SAR-based fast flood mapping using Sentinel-1 imagery[J]. Geomatics World, 2015, 22(5):100-103.[曾玲方, 李霖, 万丽华. 基于Sentinel-1卫星SAR数据的洪水淹没范围快速提取[J]. 地理信息世界, 2015, 22(5):100-103.] [22] Huang Lei, Li Zhen, Zhou Jianmin, et al. Glacier change monitoring using sar:an overview[J]. Advances in Earth Science, 2014, 29(9):985-993.[黄磊, 李震, 周建民, 等. SAR监测冰川变化研究进展[J]. 地球科学进展, 2014, 29(9):985-993.] [23] Huai Baojuan, Li Zhongqin, Sun Meiping, et al. Discussion on RS methods for glacier outline detection:a case study in headwaters of the Kanas River[J]. Arid Zone Research, 2013, 30(2):372-377.[怀保娟, 李忠勤, 孙美平, 等. 多种遥感分类方法提取冰川边界探讨——以喀纳斯河源地区为例[J]. 干旱区研究, 2013, 30(2):372-377.] [24] Song Bo, He Yuanqing, Pang Hongxi, et al. Identifying automatically the debris-covered glaciers in China's monsoonal temperate-glacier regions based on remote sensing and GIS[J]. Journal of Glaciology and Geocryology, 2007, 29(3):456-462.[宋波, 何元庆, 庞洪喜, 等. 基于遥感和GIS的我国季风海洋型冰川区冰碛物覆盖型冰川边界的自动识别[J]. 冰川冻土, 2007, 29(3):456-462.] [25] Liu Meiling. Methods and applications for glacier extraction of multi-source remote sensing data[D]. Lanzhou:Lanzhou Jiaotong University, 2014.[刘美琳. 多源遥感影像冰川提取技术方法与应用[D]. 兰州:兰州交通大学, 2014.] [26] Yan Lili, Wang Jian. Study of extracting glacier information from remote sensing[J]. Journal of Glaciology and Geocryology, 2013, 35(1):110-118.[彦立利, 王建. 基于遥感的冰川信息提取方法研究进展[J]. 冰川冻土, 2013, 35(1):110-118.] |