[1] Dutta K, Schuur E A G, Neff J C, et al. Potential carbon release from permafrost soils of Northeastern Siberia[J]. Global Change Biology, 2006, 12(12):2336-2351. [2] Lü Jiujun, Li Xiuzhen, Hu Yuanman, et al. Research progress on permafrost in cold region ecosystem[J]. Chinese Journal of Ecology, 2007, 26(3):435-442.[吕久俊, 李秀珍, 胡远满, 等. 寒区生态系统中多年冻土研究进展[J]. 生态学杂志, 2007, 26(3):435-442.] [3] Yang Jianping, Yang Suiqiao, Li Man, et al. Vulnerability of frozen ground to climate change in China[J]. Journal of Glaciology and Geocryology, 2013, 35(6):1436-1445.[杨建平, 杨岁桥, 李曼, 等. 中国冻土对气候变化的脆弱性[J]. 冰川冻土, 2013, 35(6):1436-1445.] [4] Chu Yonglei, Wang Peng, Zhang Shiqi. Degradation of permafrost and the preliminary evaluation of its change tendency[J]. Inner Mongolia Forestry Investigation and Design, 2017, 30(2):89-94.[褚永磊, 王鹏, 张诗琪. 多年冻土退化及其趋势初步评估综述[J]. 内蒙古林业调查设计, 2017, 30(2):89-94.] [5] Hu Ping, Wu Xiukun, Li Shiweng, et al. Progress of study on permafrost microbial ecology in the past 10 years[J]. Journal of Glaciology and Geocryology, 2012, 34(3):732-739.[胡平, 伍修锟, 李师翁, 等. 近10 a来冻土微生物生态学研究进展[J]. 冰川冻土, 2012, 34(3):732-739.] [6] Li Hongqin, Xu Haiyan, Ma Xiaoliang, et al. The seasonal dynamics of soil microbial biomass and enzyme activities in permafrost area and season-ally frozen ground area of the Maxian Mountain[J]. Journal of Glaciology and Geocryology, 2017, 39(2):421-428.[李红琴, 徐海燕, 马小亮, 等. 马衔山多年冻土与季节冻土区土壤微生物量及酶活性的季节动态[J]. 冰川冻土, 2017, 39(2):421-428.] [7] Zhang Baogui, Liu Xiaojiao, Liu Min, et al. Characteristics of culturable bacteria diversity among different permafrost types in the upstream regions of the Shule River basin, Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2018, 40(1):156-165.[张宝贵, 刘晓娇, 刘敏, 等. 青藏高原疏勒河上游不同类型冻土可培养细菌多样性特征研究[J]. 冰川冻土, 2018, 40(1):156-165.] [8] Chen Yongliang, Deng Ye, Ding Jinzhi, et al. Distinct microbial communities in the active and permafrost layers on the Tibetan Plateau[J]. Molecular ecology, 2017, 26(23):6608-6620. [9] Li Miao, Feng Haiyan, Yang Zhongfang, et al. Diversity of culturable bacteria in the typical frozen soil areas in china[J]. Acta Microbiologica Sinica, 2011, 51(12):1595-1604.[李淼, 冯海燕, 杨忠芳, 等. 中国典型冻土区土壤可培养细菌多样性[J]. 微生物学报, 2011, 51(12):1595-1604.] [10] Jiang Peikun, Zhou Guomo. Changes in soil microbial biomass carbon and nitrogen under eroded red soil by vegetation recovery[J]. Journal of Soil Water Conservation, 2003, 17(1):112-114.[姜培坤, 周国模. 侵蚀型红壤植被恢复后土壤微生物量碳、氮的演变[J]. 水土保持学报, 2003, 12(1):112-114.] [11] Wang Lu, Dong Xiaopei, Zhang Wei, et al. Quantitative characters of microorganisms in permafrost at different depths and there relation to soil physicochemical properties[J]. Journal of Glaciology and Geocryology, 2011, 33(2):436-441.[王鹭, 董小培, 张威, 等. 不同深度冻土微生物数量特征及其与土壤理化性质的关系[J]. 冰川冻土, 2011, 33(2):436-441.] [12] Zhang Dandan, Zhang Limei, Shen Jüpei, et al. Soil bacterial and fungal community succession along an altitude gradient on Mount Everest[J]. Acta Ecologica Sinica, 2018, 38(7):1-15.[张丹丹, 张丽梅, 沈菊培, 等. 珠穆朗玛峰不同海拔梯度上土壤细菌和真菌群落变化特征[J]. 生态学报, 2018, 38(7):1-15.] [13] Jiao Lu, Su Xin, Huang Xia, et al. Discrimination of microbial diversity by fatty acid in drill hole DK3 and DK6 in a gas hydrate area, Qilian Mountain Permafrost[J]. Acta Geoscientica Sinica, 2014, 35(5):599-607.[焦露, 苏新, 黄霞, 等. 祁连山冻土区水合物DK3和DK6钻孔中微生物脂肪酸特征及意义[J]. 地球学报, 2014, 35(5):599-607.] [14] Yan Hui, Cai Zucong, Zhong Wenhui. PLFA analysis and its application in the study of soil microbial diversity[J]. Acta Pedologica Sinica, 2006, 43(5):851-859.[颜慧, 蔡祖聪, 钟文辉. 磷脂脂肪酸分析方法及其在土壤微生物多样性研究中的应用[J]. 土壤学报, 43(5):851-859.] [15] Song Changqing, Wu Jinshui, Lu Yahai, et al. Advances of soil microbiology in the last decade in China[J]. Advances in Earth Science, 2013, 28(10):1086-1105.[宋长青, 吴金水, 陆雅海, 等. 中国土壤微生物学研究10年回顾[J]. 地球科学进展, 2013, 28(10):1086-1105.] [16] Feng Huyuan, Ma Xiaojun, Zhang Gaosen, et al. Culturing and counting the microbial cells in permafrost on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2004, 26(2):183-187.[冯虎元, 马小军, 章高森, 等. 青藏高原多年冻土微生物的培养和计数[J]. 冰川冻土, 2004, 26(2):183-187.] [17] Zhou Mei, Yu Xinxiao. Analysis on the driving force of the permafrost degeneration in Daxinganling[J]. Journal of Arid Land Resources and Environment, 2002, 16(4):44-47.[周梅, 余新晓. 大兴安岭多年冻土退化的驱动力分析[J]. 干旱区资源与环境, 2002, 16(4):44-47.] [18] Kong Ying, Wang Chenghai. Responses and changes in the permafrost and snow water equivalent in the Northern Hemisphere under a scenario of the 1.5℃ warming[J]. Advance in Climate Change Research, 2017, 13(4):315-326.[孔莹, 王成海. 全球升温1.5℃时北半球的多年冻土及雪水当量的响应及其变化[J]. 气候变化研究进展, 2017, 13(4):315-326.] [19] Rafiq M, Mishra A. Investigating changes in Himalayan glacier in warming environment:a case study of Kolahoi glacier[J]. Environmental Earth Sciences, 2016, 75(23):1469. [20] Hu Haiqing, Luo Bizhen, Wei Shujing, et al. Estimating biological carbon storage of five typical forest types in the Daxing'anling mountains, Heilongjiang, China[J]. Acta Ecologica Sinica, 2015, 35(17):5745-5760.[胡海清, 罗碧珍, 魏书精, 等. 大兴安岭5种典型林型森林生物碳储量[J]. 生态学报. 2015, 35(17):5745-5760.] [21] Bossio D A, Scow K M. Impacts of carbon and flooding on soil microbial communities:Phospholipid fatty acid profiles and substrate utilization patterns[J]. Microbial Ecology, 1998, 35(3):265-278. [22] Cao Yusong, Fu Shenglei, Zou Xiaoming, et al. Soil microbial community composition under Eucalyptus plantations of different age in subtropical China[J]. European Journal of Soil Biology, 2010, 46(2):128-135. [23] Kulmatiski A, Beard K H. Long-term plant growth legacies overwhelm short-term plant growth effects on soil microbial community structure[J]. Soil Biology and Biochemistry, 2011, 43(4):823-830. [24] Diedhiou S, Dossa E L, Badiane A N, et al. Decomposition and spatial microbial heterogeneity associated with native shrubs in soils of agroecosystems in semi-arid Senegal[J]. Pedobiologia, 2009, 52(4):273-286. [25] Gong Xue, Wang Jihua, Guan Jianfei, et al. Impact of reclaimed water irrigation on soil chemical properties and culturable microorganisms[J]. Environmental science, 2014, 35(9):3572-3579.[龚雪, 王继华, 关健飞, 等. 再生水灌溉对土壤化学性质及可培养微生物的影响[J]. 环境科学, 2014, 35(9):3572-3579.] [26] Bi Jiangtao, He Dahan. Research advances in effects of plant on soil microbial diversity[J]. Chinese Agricultural Science Bulletin, 2009, 25(9):244-250.[毕江涛, 贺达汉. 植物对土壤微生物多样性的影响研究进展[J]. 中国农学通报, 2009, 25(9):244-250.] [27] Zi Hongbiao, Xiang Zeyu, Wang Genxu, et al. Profile of soil microbial community under different stand types in Qinghai Province (PLFA)[J]. Scientia Silvae Sinicae, 2017, 5(33):21-32.[字洪标, 向泽宇, 王根绪, 等. 青海不同林分土壤微生物群落结构(PLFA)[J]. 林业科学, 2017, 5(33):21-32.] [28] Li Yinong, Zhou Xiaomei, Zhang Naili, et al. The research of mixed litter effects on litter decomposition in terrestrial ecosystems[J]. Acta Ecologia Sinica, 2016, 36(16):4977-4987.[李宜浓, 周晓梅, 张乃丽, 等. 陆地生态系统混合凋落物分解研究进展[J]. 生态学报, 2016, 36(16):4977-4987.] [29] Ye Chong, Hu Tingxing, Huang Congde, et al. A study of site productivity decline and maintenance of artificial forest in China[J]. Journal of Sichuan Forestry Science and Technology, 2005, 26(4):50-55.[叶充, 胡庭兴, 黄从德, 等. 我国人工林地力衰退与维护研究[J]. 四川林业科技, 2005, 26(4):50-55.] [30] Luo Da, Liu Shun, Shi Zuomin, et al. Soil microbial community structure in Picea asperata plantations with different ages in subalpine of western Sichuan, Southwest China[J]. Chinese Journal of Applied Ecology, 2017, 2(28):519-527.[罗达, 刘顺, 史作民, 等. 川西亚高山不同林龄云杉人工林土壤微生物群落结构[J]. 应用生态学报, 2017, 2(28):519-527.] [31] Gu Xiaonan, He Hongshi, Tao Yan, et al. Soil microbial community structure, enzyme activities, and their influencing factors along different altitudes of Changbai Mountain[J]. Acta Ecologica Sinica, 2017, 37(24):8374-8384.[谷晓楠, 贺红士, 陶岩, 等. 长白山土壤微生物群落结构及酶活性随海拔的分布特征与影响因子[J]. 生态学报, 2017, 37(24):8374-8384.] [32] Mitchell R J, Hester A J, Campbell C D, et al. Explaining the variation in the soil microbial community:do vegetation composition and soil chemistry explain the same or different parts of the microbial variation?[J]. Plant and soil, 2012, 351(1/2):355-362. [33] Haei M, Rousk J, Ilstedt U, et al. Effects of soil frost on growth, composition and respiration of the soil microbial decomposer community[J]. Soil Biology and Biochemistry, 2011, 43(10):2069-2077. [34] Lipson D A, Schadt C W. Changes in soil microbial community structure and function in an alpine dry meadow following spring snow melt[J]. Microbial Ecology, 2002, 43(3):307-314. [35] Cutler N A, Chaput D L, van der Gast C J. Long-term changes in soil microbial communities during primary succession[J]. Soil Biology and Biochemistry, 2014, 69:359-370. [36] Wang Qingkui, Wang Yanping, Wang Silong, et al. Fresh carbon and nitrogen inputs alter organic carbon mineralization and microbial community in forest deep soil layers[J]. Soil Biology and Biochemistry, 2014, 72:145-151. [37] Muhammad N, Dai Zhongmin, Xiao Kongcao, et al. Changes in microbial community structure due to biochars generated from different feedstocks and their relationships with soil chemical properties[J]. Geoderma, 2014, 226:270-278. [38] Wang Qilan, Cao Guangmin, Wang Changting. Quantitative characters of soil microbes and microbial biomass under different vegetations in alpine meadow[J]. Chinese Journal of Ecology, 2007, 26(7):1002-1008.[王启兰, 曹广民, 王长庭. 高寒草甸不同植被土壤微生物数量及微生物生物量的特征[J]. 生态学杂志, 2007, 26(7):1002-1008.] [39] Brockett B F T, Prescott C E, Grayston S J. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada[J]. Soil Biology and Biochemistry, 2012, 44(1):9-20. [40] Yu Zhengxiang, Cai Tijiu, Zhu Binbin. Characteristics of snowpack in major forest types of northern Daxing'anling Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2015, 37(12):101-107.[俞正祥, 蔡体久, 朱宾宾. 大兴安岭北部主要森林类型林内积雪特征[J]. 北京林业大学学报. 2015, 37(12):101-107.] [41] Liu Guangsheng, Wang Genxu, Hu Hongchang, et al. Influence of vegetation coverage on water and heat processes of the active layer in permafrost regions of Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2009, 31(1):89-95.[刘光生, 王根绪, 胡宏昌, 等. 青藏高原多年冻土区植被盖度变化对活动层水热过程的影响[J]. 冰川冻土, 2009, 31(1):89-95.] [42] Li Changming, Zhang Xinfang, Zhao Lin, et al. Phylogenetic diversity of bacteria isolates and community function in permafrost:affected soil along different vegetation types in the Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2012, 32(3):713-725.[李昌明, 张新芳, 赵林, 等. 青藏高原多年冻土区土壤需氧可培养细菌多样性及群落功能研究[J]. 冰川冻土, 2012, 32(3):713-725.] [43] Dong Kang, Li Shiweng, Kang Wenlong, et al. Study of the change in microbe amount and its affect factors in the soil along the Qinghai-Tibet Highway[J]. Journal of Glaciology and Geocryology, 2013, 35(2):457-464.[董康, 李师翁, 康文龙, 等. 青藏公路沿线土壤微生物数量变化及其影响因素研究[J]. 冰川冻土, 2013, 35(2):457-464.] [44] Mao Wenliang, Tai Xisheng, Wu Xiukun, et al. Altitudinal variation characteristics of the cultivable soil bacterial community the upper reaches of the Heihe River, Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2013, 35(2):447-456.[毛文梁, 台喜生, 伍休锟, 等. 黑河上游祁连山区土壤可培养细菌群落生境的垂直分异特征[J]. 冰川冻土, 2013, 35(2):447-456.] [45] Ganzert L, Lipski A, Hubberten H W, et al. The impact of different soil parameters on the community structure of dominant bacteria from nine different soils located on Livingston Island, South Shetland Archipelago, Antarctica[J]. FEMS Microbiology Ecology, 2011, 76(3):476-491. [46] Grandy A S, Strickland M S, Lauber C L, et al. The influence of microbial communities, management, and soil texture on soil organic matter chemistry[J]. Geoderma, 2009, 150(3/4):278-286. [47] Ade Luji, Zi Hongbiao, Liu Min, et al. Response of belowground root growth dynamics to snow cover change in alpine meadow[J]. Acta Ecologica Sinica, 2017, 37(20):6773-6784.[阿的鲁骥, 字洪标, 刘敏, 等. 高寒草甸地下根系生长动态对积雪变化的响应[J]. 生态学报, 2017, 37(20):6773-6784.] |