冰川冻土 ›› 2018, Vol. 40 ›› Issue (6): 1141-1152.doi: 10.7522/j.issn.1000-0240.2018.0504
胡文涛1,2, 姚檀栋1, 余武生1, 杨威1, 高杨1
收稿日期:
2018-01-02
修回日期:
2018-09-01
出版日期:
2018-12-25
发布日期:
2019-01-21
通讯作者:
姚檀栋,E-mail:tdyao@itpcas.ac.cn
E-mail:tdyao@itpcas.ac.cn
作者简介:
胡文涛(1992-),男,江西上饶人,2015年在清华大学获学士学位,现为中国科学院青藏高原研究所在读硕士研究生,从事冰川运动及冰崩灾害研究.E-mail:hwt11@itpcas.ac.cn
基金资助:
HU Wentao1,2, YAO Tandong1, YU Wusheng1, YANG Wei1, GAO Yang1
Received:
2018-01-02
Revised:
2018-09-01
Online:
2018-12-25
Published:
2019-01-21
摘要: 在全球气候变化的背景下,冰崩灾害极有可能成为人类面临的新常态。特别是在高亚洲地区,冰崩灾害事件严重威胁"亚洲水塔"的命运和"第三极"的生态安全。因此,研究冰崩灾害事件对于保障"一带一路"国家战略的顺利实施和保护"一带一路"沿线国家的生产与生存环境具有重要的现实意义。通过梳理历史上有记录的几次冰崩灾害事件,系统介绍冰崩的发生过程;再从冰崩体的物质组成、冰崩体的运动特征、冰崩发生的可能原因以及冰崩的影响等方面总结了冰崩的研究内容;重点阐述了冰崩的研究方法;最后讨论了当前冰崩研究存在的问题,并从冰崩研究方法等角度展望了未来冰崩灾害事件的研究方向。
中图分类号:
胡文涛, 姚檀栋, 余武生, 杨威, 高杨. 高亚洲地区冰崩灾害的研究进展[J]. 冰川冻土, 2018, 40(6): 1141-1152.
HU Wentao, YAO Tandong, YU Wusheng, YANG Wei, GAO Yang. Advances in the study of glacier avalanches in High Asia[J]. Journal of Glaciology and Geocryology, 2018, 40(6): 1141-1152.
[1] Shangguan Donghui, Liu Shiyin, Ding Yongjian, et al. Characterizing the May 2015 Karayaylak Glacier surge in the eastern Pamir Plateau using remote sensing[J]. Journal of Glaciology, 2016, 62(235):944-953. [2] Evans S, Delaney K. Catastrophic mass flows in the mountain glacial environment:Chapter 16[M/OL]//Shroder J F. Snow and ice-related hazards, risks, and disasters. Manhattan, New York:Academic Press, 2015:563-606[2017-06-05]. [3] Qin Dahe. Glossary of cryosphere science[M]. Beijing:China Meteorological Press, 2014.[秦大河. 冰冻圈科学辞典[M]. 北京:气象出版社, 2014.] [4] Cuffey K, Paterson W. The Physics of Glaciers (fourth Edition)[M]. Amsterdam:Academic Press, 2010. [5] Alean J. Ice avalanches and a landslide on Grosser Aletschgletscher[J]. Zeitschrift für Gletscherkunde und Glazialgeologie, 1984:9-25. [6] Chernomorets S, Tutubalina O, Seinova I, et al. Glacier and debris flow disasters around Mt. Kazbek, Russia/Georgia[C]//Debris-Flow Hazards Mitigation:Mechanics, Prediction, and Assessment. Netherlands:Millpress, 2007:691-702. [7] Frattini P, Riva F, Crosta G, et al. Rock-avalanche geomorphological and hydrological impact on an alpine watershed[J]. Geomorphology, 2016, 262:47-60. [8] Niyazov B. The Huascaran avalanche in the Santa Valley, Peru[J]. International Association Scientific Hydrology, 1966:304-315. [9] Allen S, Schneider D, Owens I. First approaches towards modelling glacial hazards in the Mount Cook region of New Zealand's Southern Alps[J]. Natural Hazards and Earth System Sciences, 2009, 9(2):481-499. [10] Singerland R, Voight B. Occurrences, properties, and predictive models of landslide generated water waves[J]. Rockslides and Avalanches, 1979, 2:317-397. [11] Clague J, Evans S. A review of catastrophic drainage of moraine-dammed lakes in British Columbia[J]. Quaternary Science Reviews, 2000, 19:764-1783. [12] Kershaw J, Clauge J, Evans S. Geomorphic and sedimentological signature of a two-phase outburst flood from moraine-dammed Queen Bess Lake, British Columbia, Canada[J]. Earth Surface Processes and Landforms, 2005, 30:1-25. [13] Schaub Y, Huggel C, Cochachin A. Ice-avalanche scenario elaboration and uncertainty propagation in numerical simulation of rock-/ice-avalanche-induced impact waves at Mount Hualcán and Lake 513, Peru[J]. Landslides, 2016, 13(6):1445-1459. [14] Schenider J, Gruber F, Mergili M. Impact of large landslides, mitigation measures[J]. Ital J Eng Geol Environ, 2013, 6:73-84. [15] Immerzeel W, van Beek L, Bierkens M. Climate change will affect the Asian water towers[J]. Science, 2010, 328(5984):1382-1385. [16] Yao Tandong, Thompson L, Mosbrugger V, et al. Third pole environment (TPE)[J]. Environmental Development, 2012, 3:52-64. [17] Yao Tandong, Zhang Yinsheng, Pu Jianchen, et al. Twenty-year observations of glacier, hydrology and meteorology at the Tanggula Pass of the Tibetan Plateau:significance and achievements[J]. Journal of Glaciology and Geocryology, 2010, 32(6):1152-1161.[姚檀栋, 张寅生, 蒲键辰, 等. 青藏高原唐古拉山口冰川、水文和气候学观测20 a:意义与贡献[J]. 冰川冻土, 2010, 32(6):1152-1161.] [18] Yao Tandong, Chen Fahu, Cui Peng, et al. From Tibetan Plateau to Third Pole and Pan-Third Pole[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(9):924-931.[姚檀栋, 陈发虎, 崔鹏, 等. 从青藏高原到第三极和泛第三极[J]. 中国科学院院刊, 2017, 32(9):924-931. [19] Tian Lide, Yao Tandong, Gao Yang, et al. Two glaciers collapse in western Tibet[J]. Journal of Glaciology, 2017, 63(237):1-4. [20] Yao Tandong, Thompson L, Yang Wei, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9):663-667. [21] Röthlisberger H. Eislawinen und Ausbrüche von Gletscherseen[J]. Gletscher und Klima-glaciers et climat, Jahrbuch der Schweizerischen Naturforschenden Gesellschaft, wissenschaftlicher Teil, 1978:170-212. [22] Faillettaz J, Funk M, Sornette D. Instabilities on alpine temperate glaciers:new insights arising from the numerical modelling of Allalingletscher (Valais, Switzerland)[J]. Natural Hazards and Earth System Sciences, 2012, 12(9):2977-2991. [23] Morales B. The Huascaràn avalanche in the Santa valley, Peru[J]. IASH Publication, 1966, 69:304-315. [24] Evans S, Degraff J. Catastrophic landslides:effects, occurrence, and mechanisms[M]. Boulder, Colorado:Geological Society of America, 2002. [25] Ericksen G, Plafker G, Concha J. Preliminary report on the geologic events associated with the May 31, 1970, Peru earthquake[M]. Reston, Virginia:United States Geological Survey, 1970. [26] Kotlyakov V, Rototaeva O, Nosenko G. The September 2002 Kolka glacier catastrophe in North Ossetia, Russian Federation:evidence and analysis[J]. Mountain Research and Development, 2004, 24(1):78-83. [27] Kääb A, Wessels R, Haeberli W, et al. Rapid ASTER imaging facilitates timely assessment of glacier hazards and disasters[J]. Eos Transactions American Geophysical Union, 2003, 84(13):117-121. [28] Qiu J. Giant deadly ice slide baffles researchers[J]. Nature, 2016. DOI:10.1038/nature.2016.20471. [29] Qiu J. Ice on the run.[J]. Science, 2017, 358(6367):1120-1123. [30] NASA Earth Observatory. Massive and Mysterious Ice Avalanche in Tibet[J/OL]. 2016[2017-11-02]. https://earthobservatory.nasa.gov/images/88677/massive-and-mysterious-ice-avalanche-in-tibet. [31] Evans S G, Bishop N F, Smoll L F, et al. A re-examination of the mechanism and human impact of catastrophic mass flows originating on Nevado Huascarán, Cordillera Blanca, Peru in 1962 and 1970[J]. Engineering Geology, 2009, 108(1/2):96-118. [32] Hu Kaiheng, Cui Peng, Li Pu. Debris flow dynamic models and numerical computation[J]. Chinese Journal of Nature, 2014, 36(5):313-318.[胡凯衡, 崔鹏, 李浦. 泥石流动力学模型与数值模拟[J]. 自然杂志, 2014, 36(5):313-318.] [33] Pudasaini S, Miller S. The hypermobility of huge landslides and avalanches[J]. Engineering Geology, 2013, 157:124-132. [34] McArdell B, Bartelt P, Kowalski J. Field observations of basal forces and fluid pore pressure in a debris flow[J]. Geophysical Research Letters, 2007, 34:L07406. [35] Yang Kang, Liu Qiao. Supraglacial drainage system:a review[J]. Journal of Glaciology and Geocryology, 2016, 38(6):1666-1678.[杨康, 刘巧. 冰川表面水文过程研究综述[J]. 冰川冻土, 2016, 38(6):1666-1678.] [36] Bottino G, Chiarle M, Joly A, et al. Modelling rock avalanches and their relation to permafrost degradation in glacial environments[J]. Permafrost and Periglacial Processes, 2002, 13(4):283-288. [37] Shroder J, Haeberli W, Whiteman C. Snow and ice-related hazards, risks and disasters[M]. Amsterdam:Elsevier, 2015. [38] Huggel C. Assessment of glacial hazards based on remote sensing and GIS modeling[M]. Zürich, Switzerland:Geographisches Institut der Universität Zürich, 2004. [39] Huggel C, Caplan-Auerbach J, Waythomas C, et al. Monitoring and modeling ice-rock avalanches from ice-capped volcanoes:a case study of frequent large avalanches on Iliamna Volcano, Alaska[J]. Journal of Volcanology and Geothermal Research, 2007, 168(1):114-136. [40] Pierson T, Janda R. Volcanic mixed avalanches:a distinct eruption-triggered mass-flow process at snow-clad volcanoes[J]. Geological Society of America Bulletin, 1994, 106(10):1351-1358. [41] Shroder J, Haeberli W, Whiteman C. Snow and ice-related hazards, risks and disasters[M]. Amsterdam:Elsevier, 2015:607-646. [42] Post A. Effects of the March 1964 Alaska earthquake on glaciers[M]. Washington:United States Government Printing Office, 1967. [43] van der Woerd J, Owen L, Tapponnier P, et al. Giant,~M8 earthquake-triggered ice avalanches in the eastern Kunlun Shan, northern Tibet:Characteristics, nature and dynamics[J]. Geological Society of America Bulletin, 2004, 116(3/4):394-406. [44] Krautblatter M, Funk D, Günzel F. Why permafrost rocks become unstable:a rock-ice-mechanical model in time and space[J]. Earth Surface Processes and Landforms, 2013, 38(8):876-887. [45] Chen Hongju, Yang Jianping, Tan Chunping. Responsivity of glacier to climate change in China[J]. Journal of Glaciology and Geocryology, 2017, 39(1):16-23.[陈虹举, 杨建平, 谭春萍. 中国冰川变化对气候变化的响应程度研究[J]. 冰川冻土, 2017, 39(1):16-23.] [46] Haeberli W, Naef F. Murgänge im Hochgebirge:Ereignisse 1987 im Puschlav und Obergoms[J]. Die Alpen, 1988, 64:331-343. [47] Jomelli V, Brunstein D, Grancher D, et al. Is the response of hill slope debris flows to recent climate change univocal? A case study in the Massif des Ecrins (French Alps)[J]. Climatic Change, 2007, 85(1/2):119-137. [48] Zimmermann M, Haeberli W. Climatic change and debris flow activity in high-mountain areas. A case study in the Swiss Alps[J]. Catena Supplement, 1992, 22:59-72. [49] Huggel C, Clague J, Korup O. Is climate change responsible for changing landslide activity in high mountains?[J]. Earth Surface Processes and Landforms, 2012, 37(1):77-91. [50] Evans S, Clague J. Recent climatic change and catastrophic geomorphic processes in mountain environments[J]. Geomorphology, 1994, 10(1):107-128. [51] Shen Yongping, Su Hongchao, Wang Guoya, et al. The response of glaciers and snow cover to climate change in Xinjiang (Ⅱ):Hydrological effect[J]. Journal of Glaciology and Geocryology, 2013, 35(6):1355-1370.[沈永平, 苏宏超, 王国亚, 等. 新疆冰川、积雪对气候变化的响应(Ⅱ):灾害效应[J]. 冰川冻土, 2013, 35(6):1355-1370.] [52] Yao Tandong, Liu Shiyin, Pu Jianchen, et al. Recent retreat of high Asian glacier and its impact on water resources of west China[J]. Science in China:Series D Earth Sciences, 2004, 34(6):535-543.[姚檀栋, 刘时银, 蒲健辰, 等. 高亚洲冰川的近期退缩及其对西北水资源的影响[J]. 中国科学:D辑地球科学, 2004, 34(6):535-543.] [53] Schweizer J, Jamieson J, Skjonsberg D. Avalanche forecasting for transportation corridor and backcountry in Glacier National Park (BC, Canada)[J]. 25 Years of Snow Avalanche Research, Voss, Norway, 12-16 May 1998, 1998:238-243. [54] Salzmann N, Kääb A, Huggel C, et al. Assessment of the hazard potential of ice avalanches using remote sensing and GIS-modelling[J]. Norsk Geografisk Tidsskrift-Norwegian Journal of Geography, 2004, 58(2):74-84. [55] Kääb A. Monitoring high-mountain terrain deformation from repeated air-and spaceborne optical data:examples using digital aerial imagery and ASTER data[J]. ISPRS Journal of Photogrammetry and remote sensing, 2002, 57(1):39-52. [56] Kääb A. Remote sensing of permafrost-related problems and hazards[J]. Permafrost and Periglacial Processes, 2008, 19(2):107-136. [57] Wang Xin, Liu Qionghuan, Jiang Lianghong, et al. Characteristics and influence factors of glacier surface velocity in the Everest region, the Himalayas derived from ALOS/PALSAR images[J]. Journal of Glaciology and Geocryology, 2015, 37(3):570-579.[王欣, 刘琼欢, 蒋亮虹, 等. 基于SAR影像的喜马拉雅山珠穆朗玛峰地区冰川运动速度特征及其影响因素分析[J]. 冰川冻土, 2015, 37(3):570-579] [58] Ash M, Brennan P, Keylock C, et al. Two-dimensional radar imaging of flowing avalanches[J]. Cold Regions Science and Technology, 2014, 102:41-51. [59] Huggel C, Zgraggen-Oswald S, Haeberli W, et al. The 2002 rock/ice avalanche at Kolka/Karmadon, Russian Caucasus:assessment of extraordinary avalanche formation and mobility, and application of QuickBird satellite imagery[J]. Natural Hazards and Earth System Science, 2005, 5(2):173-187. [60] Glacier and Permafrost Hazards in Mountains Working Group. Twin glacier collapse in Tibet puzzles scientists and triggers rapid international collaboration[J/OL]. 2016[2017-11-02]. http://www.esa-glaciers-cci.org/index.php?q=node/139. [61] Allen S, Owens I, Sirguey P. Satellite remote sensing procedures for glacial terrain analyses and hazard assessment in the Aoraki Mount Cook region, New Zealand[J]. New Zealand Journal of Geology and Geophysics, 2008, 51(1):73-87. [62] Bugnion L, Schaefer M, Bartelt P. Density variations in dry granular avalanches[J]. Granular Matter, 2013, 15(6):771-781. [63] Hutter K, Schneider L. Important aspects in the formulation of solid-fluid debris-flow models. Part I. Thermodynamic implications[J]. Continuum Mechanics and Thermodynamics, 2010, 22(5):363-390. [64] Ancey C. Plasticity and geophysical flows:a review[J]. Journal of Non-Newtonian Fluid Mechanics, 2007, 142(1):4-35. [65] Fischer J, Kowalski J, Pudasaini S. Topographic curvature effects in applied avalanche modeling[J]. Cold Regions Science and Technology, 2012, 74:21-30. [66] Hutter K, Schneider L. Important aspects in the formulation of solid-fluid debris-flow models. Part Ⅱ. Constitutive modelling[J]. Continuum Mechanics and Thermodynamics, 2010, 22(5):391-411. [67] Hutter K, Wang Yongqi, Pudasaini S. The Savage Hutter avalanche model:how far can it be pushed?[J]. Philosophical Transactions of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, 2005, 363(1832):1507-1528. [68] Savage S, Hutter K. The motion of a finite mass of granular material down a rough incline[J]. Journal of fluid mechanics, 1989, 199:177-215. [69] Hungr O. A model for the runout analysis of rapid flow slides, debris flows, and avalanches[J]. Canadian Geotechnical Journal, 1995, 32(4):610-623. [70] Hutter K, Svendsen B, Rickenmann D. Debris flow modeling:a review[J]. Continuum mechanics and thermodynamics, 1994, 8(1):1-35. [71] Gray J, Wieland M, Hutter K. Gravity-driven free surface flow of granular avalanches over complex basal topography[J]Proceedings of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, 1999, 455(1985):1841-1874. [72] Pudasaini S, Hutter K. Rapid shear flows of dry granular masses down curved and twisted channels[J]. Journal of Fluid Mechanics, 2003, 495:193-208. [73] Zahibo N, Pelinovsky E, Talipova T, et al. Savage-Hutter model for avalanche dynamics in inclined channels:Analytical solutions[J]. Journal of Geophysical Research:Solid Earth, 2010, 115(B3). [74] Fleishman S. Mudflows[J]. Hydrometeoizdat, Leningrad (in Russian), 1970. [75] Julien P, Paris A. Mean velocity of mudflows and debris flows[J]. Journal of Hydraulic Engineering, 2010, 136(9):676-679. [76] Hu Kaiheng, Tian Mi, Li Yong. Influence of flow width on mean velocity of debris flows in wide open channel[J]. Journal of Hydraulic Engineering, 2012, 139(1):65-69. [77] Ishii M, Zuber N. Drag coefficient and relative velocity in bubbly, droplet or particulate flows[J]. AIChE Journal, 1979, 25(5):843-855. [78] Pudasaini S P. A general two-phase debris flow model[J]. Journal of Geophysical Research:Earth Surface, 2012, 117(F3). [79] Anderson T, Jackson R. Fluid mechanical description of fluidized beds. Equations of motion[J]. Industrial & Engineering Chemistry Fundamentals, 1967, 6(4):527-539. [80] Pelanti M, Bouchut F, Mangeney A. A Roe-type scheme for two-phase shallow granular flows over variable topography[J]. ESAIM:Mathematical Modelling and Numerical Analysis, 2008, 42(5):851-885. [81] Kowalski J. Two-phase modeling of debris flows[M]. Zurich, Switzerland:ETH Zurich, 2008. [82] George D, Iverson R. A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure[J]. Italian Journal of Engineering Geology and Environment, 2011, 43:415-424. [83] Iverson R. The physics of debris flows[J]. Reviews of geophysics, 1997, 35(3):245-296. [84] Iverson R, Denlinger R. Flow of variably fluidized granular masses across three-dimensional terrain:1. Coulomb mixture theory[J]. Journal of Geophysical Research:Solid Earth, 2001, 106(B1):537-552. [85] Pitman E, Le Long. A two-fluid model for avalanche and debris flows[J]. Philosophical Transactions of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, 2005, 363(1832):1573-1601. [86] Guo Songbai, Xu Pengcheng, Zheng Zuohuan, et al. Estimation of flow velocity for a debris flow via the two-phase fluid model[J]. Nonlinear Processes in Geophysics, 2015, 22(1):109-116. [87] Bagnold R. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear[J]. Proceedings of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, 1954, 225(1160):49-63. [88] Domnik B, Pudasaini S. Full two-dimensional rapid chute flows of simple viscoplastic granular materials with a pressure-dependent dynamic slip-velocity and their numerical simulations[J]. Journal of Non-Newtonian Fluid Mechanics, 2012, 173:72-86. [89] Pudasaini S, Miller S. A real two-phase submarine debris flow and tsunami[C]//AIP Conference Proceedings. Maryland, America:American Institute of Physics, 2012, 1479(1):197-200. [90] Pudasaini S, Krautblatter M. A two-phase mechanical model for rock-ice avalanches[J]. Journal of Geophysical Research:Earth Surface, 2014, 119(10):2272-2290. [91] Pudasaini S, Miller S, Simos T, et al. Buoyancy induced mobility in two-phase debris flow[C]//AIP Conference Proceedings. Maryland, America:American Institute of Physics, 2012, 1479(1):149-152. [92] Pudasaini S. Dynamics of submarine debris flow and tsunami[J]. Acta Mechanica, 2014, 225(8):2423-2434. [93] Christen M, Bartelt P, Gruber U. AVAL-1D:An avalanche dynamics program for the practice[J]. International Congress Interpraevent, 2002, 2:715-725. [94] Cesca M, D'Agostino V. Comparison between FLO-2D and RAMMS in debris-flow modelling:a case study in the Dolomites[J]. WIT Transactions on Engineering Sciences, 2008, 60:197-206. [95] Voellmy A. Uber die Zerstorungskraft von Lawinen[J]. Schweizerische Bauzeitung, Jahrg., 1955, 73:159-162. [96] Fern ndez-Nieto E, Bouchut F, Bresch D, et al. A new Savage Hutter type model for submarine avalanches and generated tsunami[J]. Journal of Computational Physics, 2008, 227(16):7720-7754. [97] LeVeque R. Finite volume methods for hyperbolic problems[J]. Meccanica, 2004, 39(1):88-89. [98] Yoon T, Kang S. Finite volume model for two-dimensional shallow water flows on unstructured grids[J]. Journal of Hydraulic Engineering, 2004, 130(7):678-688. [99] Christen M, Bartelt P, Kowalski J. Back calculation of the In den Arelen avalanche with RAMMS:interpretation of model results[J]. Annals of Glaciology, 2010, 51(54):161-168. [100] Christen M, Kowalski J, Bartelt P. RAMMS:numerical simulation of dense snow avalanches in three-dimensional terrain[J]. Cold Regions Science and Technology, 2010, 63(1):1-14. [101] Silvan Leinss. Twin glacier collapse in Tibet[J/OL]. 2016[2017-11-02]. https://www.ethz.ch/en/news-and-events/eth-news/news/2016/09/twin-glacier-collapse-in-tibet.html [102] Schneider D, Allen S, Christen M, et al. Application of the RAMMS model to recent and potential rock-ice avalanches in the Mount Cook region (New Zealand)[C]. Geophysical Research Abstracts, 2008, 10. [103] Huggel C, Caplan-Auerbach J, Wessels R. Recent extreme avalanches:triggered by climate change?[J]. EOS, Transactions American Geophysical Union, 2008, 89(47):469-470. [104] Crosta G, Imposimato S, Roddeman D. Numerical modelling of entrainment/deposition in rock and debris-avalanches[J]. Engineering Geology, 2009, 109(1):135-145. [105] Mergili M, Schratz K, Ostermann A, et al. Physically-based modelling of granular flows with Open Source GIS[J]. Natural Hazards and Earth System Sciences, 2012, 12:187-200. [106] Mergili M, Fischer J, Krenn J, et al. r.avaflow v1, an advanced open-source computational framework for the propagation and interaction of two-phase mass flows[J]. Geoscientific Model Development, 2017, 10(2):553-569. [107] Bartelt P, Buser O, Vera Valero C, et al. Configurational energy and the formation of mixed flowing/powder snow and ice avalanches[J]. Annals of Glaciology, 2016, 57(71):179-188. [108] Yao Tandong, Chen Fahu, Cui Peng, et al. From Tibetan Plateau to Third Pole and Pan-Third Pole[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(9):924-931.[姚檀栋, 陈发虎, 崔鹏, 等. 从青藏高原到第三极和泛第三极[J]. 中国科学院院刊, 2017, 32(9):924-931.] [109] Meier M, Post A. What are glacier surges?[J]. Canadian Journal of Earth Sciences, 1969, 6(4):807-817. [110] Liu Kai, Wang Ninglian, Bai Xiaohua. Variation of glaciers in the Nubra Basin, Karakoram Mountains, revealed by remote sensing images during 1993-2015[J]. Journal of Glaciology and Geocryology, 2017, 39(4):710-719.[刘凯, 王宁练, 百晓华. 1993-2015年喀喇昆仑山努布拉流域冰川变化遥感监测[J]. 冰川冻土, 2017, 39(4):710-719.] [111] Zhang Zhen, Liu Shiyin, Wei Junfeng, et al. Monitoring recent surging of the Karayaylak Glacier in Pamir by remote sensing[J]. Journal of Glaciology and Geocryology, 2016, 38(1):11-20.[张震, 刘时银, 魏俊峰, 等. 新疆帕米尔跃动冰川遥感监测研究[J]. 冰川冻土, 2016, 38(1):11-20.] |
[1] | 周苏娥, 张明军, 王圣杰, 孟鸿飞, 张亚宁, 余秀秀. 基于Stewart模型改进方案的新疆降水同位素的云下蒸发效应比较[J]. 冰川冻土, 2019, 41(2): 304-315. |
[2] | 张文强, 王羿, 牛永红. 冻土模型试验试样冻结时间计算分析[J]. 冰川冻土, 2019, 41(2): 384-391. |
[3] | 白瑞强, 徐湘田, 华树广, 王继伟. 基于多元线性回归模型的冻土强度影响因素显著性分析[J]. 冰川冻土, 2019, 41(2): 416-423. |
[4] | 熊俊楠, 龚颖, 刘志奇, 范春捆, 朱吉龙. 基于灰色理论的西藏暴雨洪涝预测[J]. 冰川冻土, 2019, 41(2): 457-469. |
[5] | 张鑫, 周建民, 刘志平. 基于KH-9数据对青藏高原山地冰川DEM提取及精度评价——以普若岗日冰川和雅弄冰川为例[J]. 冰川冻土, 2019, 41(1): 27-35. |
[6] | 申艳军, 杨更社, 王婷, 贾海梁, 奚家米, 罗滔, 王永志. 岩石内孔隙/裂隙冻胀力模型及其适用性评价[J]. 冰川冻土, 2019, 41(1): 117-128. |
[7] | 赵奕, 南卓铜, 李祥飞, 徐毅, 张凌. 分布式水文模型DHSVM在西北高寒山区流域的适用性研究[J]. 冰川冻土, 2019, 41(1): 147-157. |
[8] | 郭海燕, 陈军, 徐金霞, 徐沅鑫, 马振峰. 基于通用计算的涪江中段径流模拟研究[J]. 冰川冻土, 2019, 41(1): 158-164. |
[9] | 党超, 褚娜娜, 张鹏. 冰碛湖溃决泥石流流量计算方法[J]. 冰川冻土, 2019, 41(1): 165-174. |
[10] | 赵晓萌, 蔡新玲, 雷向杰, 田亮, 卫星君. 基于Logistic回归的陕南秦巴山区降雨型滑坡预测方法[J]. 冰川冻土, 2019, 41(1): 175-182. |
[11] | 秦艳慧, 吴通华, 李韧, 胡国杰, 乔永平, 朱小凡, 杨淑华, 余文君, 王蔚华. 基于GIPL2模型的青藏高原活动层土壤热状况模拟研究[J]. 冰川冻土, 2018, 40(6): 1153-1166. |
[12] | 李杰林, 刘汉文. 冻融循环作用下砂岩孔隙体积变形模型的建立与分析[J]. 冰川冻土, 2018, 40(6): 1173-1180. |
[13] | 韩惠, 杨晓辉, 赵井东. 西昆仑山崇测冰川区多源遥感影像的冰川信息提取方法研究[J]. 冰川冻土, 2018, 40(5): 951-959. |
[14] | 杨吉萍, 钟方雷, 徐晓明, 吴青柏. 青藏铁路对西藏各经济部门发展影响的定量评估[J]. 冰川冻土, 2018, 40(5): 1047-1055. |
[15] | 徐金霞, 郭海燕, 徐沅鑫, 马振峰, 钟燕川. 基于FloodArea模型的小流域山洪灾害临界雨量阈值初探[J]. 冰川冻土, 2018, 40(4): 812-819. |
|