冰川冻土 ›› 2020, Vol. 42 ›› Issue (1): 124-139.doi: 10.7522/j.issn.1000-0240.2020.0008
汪关信1,2(), 张廷军1,2(
), 杨瑞敏1,2, 钟歆玥3, 李晓东1,2
收稿日期:
2019-10-20
修回日期:
2020-03-12
出版日期:
2020-06-30
发布日期:
2020-07-03
通讯作者:
张廷军
E-mail:wanggx13@lzu.edu.cn;tjzhang@lzu.edu.cn
作者简介:
汪关信(1993 - ), 男, 陕西镇安人, 2017年在兰州大学获得学士学位, 现为兰州大学在读硕士研究生, 从事湖冰遥感研究. E-mail: wanggx13@lzu.edu.cn
基金资助:
Guanxin WANG1,2(), Tingjun ZHANG1,2(
), Ruimin YANG1,2, Xinyue ZHONG3, Xiaodong LI1,2
Received:
2019-10-20
Revised:
2020-03-12
Online:
2020-06-30
Published:
2020-07-03
Contact:
Tingjun ZHANG
E-mail:wanggx13@lzu.edu.cn;tjzhang@lzu.edu.cn
摘要:
在全球气候变暖背景下, 第三极和北极地区的增温尤其明显, 冰冻圈对气候变化有着更为敏感的响应。湖冰作为冰冻圈的重要组成部分, 其变化不仅是气候的指示器, 同时也通过改变能量平衡、 大气环流、 辐射平衡等影响区域气候。通过对比不同观测手段及主要模型模拟方法在湖冰研究中的优缺点及适用性, 总结了第三极和北极湖冰变化的时空特征, 结果表明:第三极和北极地区湖冰均显示初冰日推迟、 消融日提前、 封冻期缩短的趋势; 第三极和北极地区湖冰厚度呈持续减少趋势; 未来湖冰的这些变化将更加显著。第三极和北极地区湖冰的变化主要受到气温的影响, 同时也受到风速、 湖泊理化性质的限制。在系统梳理第三极和北极地区湖冰变化的基础上, 总结了湖冰研究面临的问题和挑战, 为未来湖冰研究提供科学依据。
中图分类号:
汪关信, 张廷军, 杨瑞敏, 钟歆玥, 李晓东. 从第三极到北极: 湖冰研究进展[J]. 冰川冻土, 2020, 42(1): 124-139.
Guanxin WANG, Tingjun ZHANG, Ruimin YANG, Xinyue ZHONG, Xiaodong LI. Lake ice changes in the Third Pole and the Arctic[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 124-139.
表1
不同遥感类型在湖冰研究中的应用"
遥感类型 | 卫星 | 传感器名称 | 幅宽/km | 分辨率/m | 时间序列 | 主要应用 |
---|---|---|---|---|---|---|
光学遥感 | Landsat Series | MSS | 185 | 78 | 1972 - 1983 | 冰面(积雪)反照率、 表面温度、 厚度; 物候 |
TM | 185 | 30 | 1982 - 2011 | |||
ETM+ | 185 | 30 | 1999 - | |||
OLI | 185 | 30 | 2013 - | |||
NOAA | AVHRR | 2 900 | 1 100 | 1978 - | ||
INSAT 3A | CCD | 全球覆盖 | 1 000 | 2003 - | ||
Terra, Aqua | MODIS | 2 030 | 250 | 2000 - | ||
被动微波遥感 | Nimbus 7 | SMMR | 600 | 25 000 | 1978 - 1987 | 湖冰厚度; 湖冰物候 |
DMSP | SSM/I | 1 400 | 25 000 | 1987 - 2008 | ||
Aqua | AMSR-E | 1 445 | 4 000 | 2002 - 2011 | ||
SEASAT | SNMR | 600 | 22 000 | 1978 - | ||
DMSP | SSMIS | 1 700 | 25 000 | 2000 - | ||
TRMM | TMI | 780 | 4 400 | 1997 - | ||
主动微波遥感/合成 孔径雷达 | SEASAT | SAR | 100 | 25 | 1978 - | 湖冰类型; 湖冰物候 |
Sentinel | SAR | 80 | 5 | 2015 - | ||
ERS 1, 2 | AMI SAR(C波段) | 100 | 30 | 1991 - | ||
RADARSAT | Radarsat SAR(C波段) | 100 ~ 170 | 10 | 1995 - | ||
Envisat | ASAR | 100 | 28 | 2002 - |
表2
第三极湖冰研究主要成果"
区域 | 时段 | 手段 | 湖冰变化 | 原因或影响 | 来源 |
---|---|---|---|---|---|
纳木错 | 2000 - 2013年 | MODIS反射率产品 | 纳木错湖冰存在期显著缩短 (-2.8 d·a-1), 冻结困难, 消融加速, 稳定性减弱 | 主要受湖面温度、 湖面辐射亮温和气温变化的影响 | 勾鹏等[ |
纳木错 | 2006 - 2011年 | 观测+MODIS反射率产品 | 纳木错湖冰平均封冻期为90天, 最大湖冰厚度为58 ~ 65 cm | 主要受气温影响, 也受风速影响, 和冬季负积温具有良好关系 | 曲斌等[ |
纳木错 | 1978 - 2013年 | 被动微波 | 1978年至今湖冰存在时间持续减少19天, 初冰日推迟9天 | 气温与湖冰存在时间呈负相关 关系 | Ke, et al[ |
青海湖 | 2000 - 2016年 | MODIS | 完全封冻期为77天, 湖冰存在期为108天, 湖冰物候特征各时间节点变化呈现较大差异 | 冬半年负积温大小是影响封冻期的关键要素, 但风速和降水对湖冰的形成和消融亦发挥着重要作用 | 祁苗苗等[ |
青海湖 | 1979 - 2016年 | 被动微波(SSM/I和SSMR) | 初冰日和封冻日分别推迟6.16天和2.27天, 消融日和完全消融日分别提前11.24天和14.09天, 封冻期和湖冰存在期分别缩短14.84天和21.21天 | 湖冰存在期主要被气温控制, 同时受到区域其他气象条件以及湖泊位置等影响 | Cai, et al[ |
青海湖 | 1958 - 1983年(观测) 1993 - 1994年(遥感) | NOAA+AVHRR+观测 | 厚度变薄, 封冻期缩短; 建立湖水冻结百分比 | 冻结和解冻相对气温升降有一定的滞后性 | 陈贤章等[ |
可可西 里地区 | 2000 - 2011年 | MODIS | 湖泊开始冻结和完全冻结时间推迟, 湖冰开始消融和完全消融时间提前, 湖泊完全封冻期和封冻期持续时间普遍缩短, 平均变化速率分别为2.21 d·a-1和1.91 d·a-1 | 湖冰物候特征及其冰情演变是区域气候变化和湖泊自身条件共同作用的产物, 其中气温、 湖泊面积、 湖水矿化度和湖泊形态是影响湖冰物候特征的主要因素 | 姚晓军等[ |
青藏高 原地区 | 2001 - 2010年 | MODIS | 59个湖泊中, 绝大多数呈现出封冻期和湖冰存在期缩短的趋势, 存在明显的空间分异 | 造成湖冰物候存在空间分异的主要原因为气温、 盐度、 湖泊形状等因素 | Kropáček, et al[ |
青藏高原地区 | 2002 - 2015年 | 被动微波(AMSR-E和AMSR2) | 青藏高原南部消融日推迟和封冻期延长, 但北部湖泊变化存在空间差异 | 青藏高原南部湖泊消融日、 封冻期变化与冬季北大西洋涛动(NAO)之间存在密切联系 | Liu, et al[ |
青藏高原地区 | 2000 - 2015年 | MODIS积雪产品 | 平均封冻结冰期在176天左右, 完全封冻期在130天左右; 湖冰物候有明显区域差异, 北部湖区开始结冰期早, 完全融化期晚, 封冻期长; 南部湖区开始结冰期晚, 完全融化期早, 封冻期短 | 湖冰物候时空变化主要受温度、 降水、 风速的影响, 温度是主要的影响要素, 温度升高或降雨增加都会使封冻期缩短, 风速对湖冰物候有一定的影响 | 王智颖等[ |
青藏高原地区 | 2000 - 2017年 | MODIS积雪产品 | 平均湖冰存在期为157.78天, 其中18个湖泊湖冰存在期延长(1.11 d·a-1), 其余湖泊湖冰存在期缩短(0.80 d·a-1) | 地理位置和气候条件决定了湖冰物候的空间异质性, 而理化特征主要影响湖冰初冰日。湖冰的持续时间受气候和湖泊特定理化性质影响 | Cai, et al[ |
表3
北极地区湖冰主要研究成果"
区域 | 时段 | 手段 | 湖冰变化 | 原因或影响 | 来源 |
---|---|---|---|---|---|
阿拉斯加北部 | 2003 - 2011年 | SAR | 与1980年相比, 16%的触地冰发展成漂浮冰; 整体湖冰厚度减薄 | 对多年冻土融区发育、 湖泊热能变化、 水生生物存在影响 | Arp, et al[ |
阿拉斯加北部 | 2012 - 2014年 | 野外监测、 气候模型 | 触底冰区完全消融日比浮冰区平均早17天, 消融日提前使其蒸发大于浮冰区 | 由触底冰向漂浮冰转化, 抑制蒸发增强 | Arp, et al[ |
北极阿拉斯加 | 1947 - 1997年 | 基于有限元的热传导物理模型 | 湖冰平均最大厚度为1.9 m | 雪深对湖冰深度的影响大于气温 | Zhang, et al[ |
北极加拿大 | 1985 - 2004年 | 遥感(AVHRR)/监测 | 初冰日推迟0.76 d·a-1, 消融日提前0.99 d·a-1 | Latifovic, et al[ | |
阿拉斯加北坡 | 1997 - 2011年 | RADARSAT-1/2, ASAR, LANDSAT | 湖泊从多年湖冰发展为季节湖冰 | Surdu, et al[ | |
北欧地区(Lake Kilpisjärvi) | 1964 - 2008年 | 实地监测 | 冻结日期推迟2.3 d·a-1, 湖冰厚度减少; 气温升高1 ℃, 初冰日推迟3.4天, 消融日提前3.6天 | 北大西洋涛动(NAO)并未显著影响湖冰, 气温和积雪对湖冰影响剧烈 | Lei, et al[ |
1 | Stocker T F. The closing door of climate targets[J]. Science, 2013, 339(6117): 280 - 282. |
2 | Kang S, Xu Y, You Q, et al. Review of climate and cryospheric change in the Tibetan Plateau[J]. Environmental research letters, 2010, 5(1): 15101. |
3 | Vavrus S J, Wynne R H, Foley J A. Measuring the sensitivity of southern Wisconsin lake ice to climate variations and lake depth using a numerical model[J]. Limnology and Oceanography, 1996, 41(5): 822 - 831. |
4 | Brown L C, Duguay C R. The response and role of ice cover in lake-climate interactions[J]. Progress in Physical Geography, 2010, 34(5): 671 - 704. |
5 | Huang Wenfeng, Li Zhijun, Han Hongwei, et al. Seasonal evolution of static freshwater lake ice microstructures and the effects of growth processes[J]. Journal of Glaciology and Geocryology, 2016, 38(3): 699 - 707. |
黄文峰, 李志军, 韩红卫, 等. 静水生长的淡水湖冰微结构的季节变化及其受生长过程的影响[J]. 冰川冻土, 2016, 38(3): 699 - 707. | |
6 | Duguay C R, Prowse T D, Bonsal B R, et al. Recent trends in Canadian lake ice cover[J]. Hydrological Processes: An International Journal, 2006, 20(4): 781 - 801. |
7 | Johannessen O M, Campbell W J, Shuchman R A, et al. Microwave study programs of air-ice-ocean interactive processes in the seasonal ice zone of the Greenland and Barents Seas[J]. 1992. |
8 | Ren Xiaoqian, Sun Shufen, Chen Wen, al et, A review of researches on the lake numerical modeling[J]. Advances in Earth Science, 2013, 28(3): 347 - 356. |
任晓倩, 孙菽芬, 陈文, 等. 湖泊数值模拟研究现状综述[J]. 地球科学进展, 2013, 28(3): 347 - 356. | |
9 | Doran P T, McKay C P, Adams W P, et al. Climate forcing and thermal feedback of residual lake-ice covers in the high Arctic[J]. Limnology and Oceanography, 1996, 41(5): 839 - 848. |
10 | Lei R, Leppäranta M, Cheng B, et al. Changes in ice-season characteristics of a European Arctic lake from 1964 to 2008[J]. Climatic change, 2012, 115(3-4): 725 - 739. |
11 | Stroeve J, Holland M M, Meier W, et al. Arctic sea ice decline: faster than forecast[J]. Geophysical Research Letters, 2007, 34(9): 1 - 5. |
12 | Barsdate R J, Alexander V. Photosynthetic organisms in subarctic lake ice[J]. Arctic, 1970, 23(3): 201. |
13 | Anesio A M, Laybourn-Parry J. Glaciers and ice sheets as a biome[J]. Trends in ecology & evolution, 2012, 27(4): 219 - 225. |
14 | De Munck S, Gauthier Y, Bernier M, et al. River predisposition to ice jams: a simplified geospatial model[J]. Natural Hazards and Earth System Sciences, 2017, 17(7): 1033. |
15 | Ashton G D. River and lake ice engineering[M]. Water Resources Publication, 1986. |
16 | Prowse T D, Furgal C, Chouinard R, et al. Implications of climate change for economic development in northern Canada: energy, resource, and transportation sectors[J]. AMBIO: A Journal of the Human Environment, 2009, 38(5): 272 - 282. |
17 | Nuttall M, Berkes F, Forbes B, et al. Hunting, herding, fishing and gathering: indigenous peoples and renewable resource use in the Arctic[J]. Arctic Climate Impact Assessment, 2005: 649 - 690. |
18 | Yao Tandong. TPE international program: a program for coping with major future environmental challenges of The Third Pole region[J]. Progress in Geography, 2014, 33(7): 884 - 892. |
姚檀栋. “第三极环境 (TPE)”国际计划——应对区域未来环境生态重大挑战问题的国际计划[J]. 地理科学进展, 2014, 33(7): 884 - 892. | |
19 | Li Jijun, Fang Xiaomin, Pan Baotian, et al. Late Cenozoic intensive uplift of Qinghai-Xizang Plateau and its impacts on environments in surrounding area[J]. Quaternary Sciences, 2001, 21(5): 381 - 391. |
李吉均, 方小敏, 潘保田, 等. 新生代晚期青藏高原强烈隆起及其对周边环境的影响[J]. 第四纪研究, 2001, 21(5): 381 - 391. | |
20 | Wu Guoxiong, Zhang Yongsheng. Thermal and mechanical forcing of the Tibetan Plateau and Asian Monsoon onset. Part II: timing of the onset[J]. Chinese Journal of Atmospheric Sciences, 1999, 23(1): 51 - 61. |
吴国雄, 张永生. 青藏高原的热力和机械强迫作用以及亚洲季风的爆发: Ⅱ 爆发时间[J]. 大气科学, 1999, 23(1): 51 - 61. | |
21 | Pan Baotian, Li Jijun. Qinghai-Tibetan Plateau: a driver and amplifier of the global climate change[J]. Journal of Lanzhou University: Natural Sciences, 1996, 32(1): 108 - 115. |
潘保田, 李吉均. 青藏高原: 全球气候变化的驱动机与放大器[J]. 兰州大学学报 (自然科学版), 1996, 32(1): 108 - 115. | |
22 | Ye Duzheng, Luo Siwei, Zhu Baozhen. The wind structure and heat balance in the lower troposphere over Tibetan Plateau and its surrounding[J]. Acta Meteorologica Sinica, 1957, 28(2): 108 - 121. |
叶笃正, 罗四维, 朱抱真. 西藏高原及其附近的流场结构和对流层大气的热量平衡[J]. 气象学报, 1957, 28(2): 108 - 121. | |
23 | Ye Duzheng, Wu Guoxiong. The role of the heat source of the Tibetan Plateau in the general circulation[J]. Meteorology and Atmospheric Physics, 1998, 67(1): 181 - 198. |
24 | Flohn H. Large-scale aspects of the “summer monsoon” in South and East Asia[J]. Journal of the Meteorological Society of Japan. Ser. II, 1957, 35: 180 - 186. |
25 | Zhao Ping, Zhou Zijiang, Liu Jiping. Variability of Tibetan spring snow and its associations with the hemispheric extra tropical circulation and East Asian summer monsoon rainfall: an observational investigation[J]. Journal of climate, 2007, 20(15): 3942 - 3955. |
26 | Wang Yuanxiang, Zhao Ping, Yu Rucong, et al. Inter-decadal variability of Tibetan spring vegetation and its associations with eastern China spring rainfall[J]. International Journal of Climatology: A Journal of the Royal Meteorological Society, 2010, 30(6): 856 - 865. |
27 | Lu Anxin, Wang Lihong, Yao Tandong. The study of Yamzho Lake and Chencuo Lake variation using remote sensing in Tibet Plateau from 1970 to 2000[J]. Remote Sensing Technology and Application, 2006, 21(3): 173 - 177. |
鲁安新, 王丽红, 姚檀栋. 青藏高原湖泊现代变化遥感方法研究[J]. 遥感技术与应用, 2006, 21(3): 173 - 177. | |
28 | Zhang Guoqing, Yao Tandong, Xie Hongjie, et al. Lakes’ state and abundance across the Tibetan Plateau[J]. Chinese Science Bulletin, 2014, 59(24): 3010-3021. |
29 | Sun Junying. A brief introduction of snow/sea ice investigation of the First Chinese National Arctic Research Expedition[J]. Journal of Glaciology and Geocryology, 2012, 22(1): 3 - 4. |
孙俊英. 中国首次北极科学考察中的冰雪考察[J]. 冰川冻土, 2012, 22(1): 3 - 4. | |
30 | Chapin F S, Sturm M, Serreze M C, et al. Role of land-surface changes in Arctic summer warming[J]. science, 2005, 310(5748): 657 - 660. |
31 | Zhao Jinping, Shi Jiuxin, Wang Zhaomin, et al. Arctic amplification produced by sea ice retreat and its global climate effects[J]. Advances in Earth Science, 2015, 30(9): 985 - 995. |
赵进平, 史久新, 王召民, 等. 北极海冰减退引起的北极放大机理与全球气候效应[J]. 地球科学进展, 2015, 30(9): 985 - 995. | |
32 | Arp C D, Jones B M, Whitman M, et al. Lake temperature and ice cover regimes in the Alaskan Subarctic and Arctic: integrated monitoring, remote sensing, and Modeling 1[J]. Journal of the American Water Resources Association, 2010, 46(4): 777 - 791. |
33 | Engram M, Arp C D, Jones B M, et al. Analyzing floating and bedfast lake ice regimes across Arctic Alaska using 25 years of space-borne SAR imagery[J]. Remote Sensing of Environment, 2018, 209: 660 - 676. |
34 | Grosse G, Jones B M, Arp C D. Thermokarst lakes, drainage, and drained basins[J]. Earth Systems and Environmental Sciences, 2013, 8: 325 - 353. |
35 | Sellmann P V, Brown J, Lewellen R I, et al. The classification and geomorphic implications of thaw lakes on the Arctic Coastal Plain, Alaska[R].Cold Regions Research and Engineering Lab Hanover NH, 1975. |
36 | Ling Feng, Zhang Tingjun. Numerical simulation of permafrost thermal regime and talik development under shallow thaw lakes on the Alaskan Arctic Coastal Plain[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D16): 1 - 12. |
37 | Arp C D, Jones B, Urban F E, et al. Shifting ice regimes of Arctic thermokarst lakes and implications for permafrost and surface-water dynamics[C]//AGU Fall Meeting Abstracts, 2011. |
38 | Walter K M, Smith L C, Stuart Chapin III F. Methane bubbling from northern lakes: present and future contributions to the global methane budget[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 365(1856): 1657 - 1676. |
39 | Chen Xianzhang, Wang Guangyu, Li Wenjun, et al. Lake ice and its remote sensing monitoring in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 1995, 17(3): 241 - 246. |
陈贤章, 王光宇, 李文君, 等. 青藏高原湖冰及其遥感监测[J]. 冰川冻土, 1995, 17(3): 241 - 246. | |
40 | Sagarin R, Micheli F. Climate change in nontraditional data sets[J]. Science, 2001, 294(5543): 811. |
41 | Buchanan J Y. Ice and its natural history[M]. Printed by William Clowes & Sons, Ltd., 1908. |
42 | Weyhenmeyer G A. Synchrony in relationships between the North Atlantic Oscillation and water chemistry among Sweden’s largest lakes[J]. Limnology and Oceanography, 2004, 49(4): 1191 - 1201. |
43 | Wei Qiufang, Ye Qinghua. Review of lake ice monitoring by remote sensing[J]. Progress in Geography, 2010, 29(7): 803 - 810. |
魏秋方, 叶庆华. 湖冰遥感监测方法综述[J]. 地理科学进展, 2010, 29(7): 803 - 810. | |
44 | Prowse T D, Brown K. Hydro-ecological effects of changing Arctic river and lake ice covers: a review[J]. Hydrology Research, 2010, 41(6): 454 - 461. |
45 | Swift C T, Jones J W L, Harrington R F, et al. Microwave radar and radiometric remote sensing measurements of lake ice[J]. Geophysical Research Letters, 1980, 7(4): 243 - 246. |
46 | Nakamura K, Wakabayashi H, Uto S, et al. Observation of sea-ice thickness using ENVISAT data from Lützow-Holm Bay, East Antarctica[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(2): 277 - 281. |
47 | Ke Changqing, Tao Anqi, Jin Xin. Variability in the ice phenology of Nam Co Lake in central Tibet from scanning multichannel microwave radiometer and special sensor microwave/imager: 1978 to 2013[J]. Journal of Applied Remote Sensing, 2013, 7(1): 73477. |
48 | Liston G E, Hall D K. An energy-balance model of lake-ice evolution[J]. Journal of Glaciology, 1995, 41(138): 373 - 382. |
49 | Gotzinger G. Studien über das Eis des Lunzer unter- und obersees[J]. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 1909, 2(3): 386 - 396. |
50 | Verescagin G. A selection of works from Lake Baikal Expedition: Dokl Acad Sci SSSR, 1925[C]. |
51 | Kuusisto E. An analysis of the longest ice observation series made on Finnish lakes[J]. Aqua Fennica, 1987, 17(2): 123 - 132. |
52 | Kuusisto E. The thickness and volume of lake ice in Finland in 1961-90[J]. Publications of the Water and Environment Research Institute, 1994, 17: 27 - 36. |
53 | Korhonen J. Long-term changes in lake ice cover in Finland[J]. Hydrology Research, 2006, 37(4-5): 347 - 363. |
54 | Li Zhijun, Han Ming, Qin Jianmin, et al. States and advances in monitor of ice thickness change[J]. Advances in Water Science, 2005, 16(5): 753 - 757. |
李志军, 韩明, 秦建敏, 等. 冰厚变化的现场监测现状和研究进展[J]. 水科学进展, 2005, 16(5): 753 - 757. | |
55 | Cao Xiaowei, Li Chunjiang, Yan Xiaofei, et al. Measuring ice thickness around the curve and piers in the Yellow River with ground penetrating rader[J]. South-to-North Water Transfers and Water Science & Technology, 2016, 14(6): 91 - 95. |
曹晓卫, 李春江, 颜小飞, 等. 利用探地雷达探测黄河弯道及桥墩周围冰层厚度[J]. 南水北调与水利科技, 2016, 14(6): 91 - 95. | |
56 | Korhola A, Sorvari S, Rautio M, et al. A multi-proxy analysis of climate impacts on the recent development of subarctic Lake Saanajärvi in Finnish Lapland[J]. Journal of Paleolimnology, 2002, 28(1): 59 - 77. |
57 | Michelutti N, Douglas M S, Smol J P. Diatom response to recent climatic change in a high arctic lake (Char Lake, Cornwallis Island, Nunavut)[J]. Global and Planetary Change, 2003, 38(3-4): 257 - 271. |
58 | Zhao Yingshi, Principles and methods of remote sensing application analysis[M]. Beijing: Science Press, 2013. [赵英时. 遥感应用分析原理与方法[M]. 北京: 科学出版社, 2013.] |
59 | Gou Peng, Ye Qinghua, Che Tao, et al. Lake ice phenology of Nam Co, Central Tibetan Plateau, China, derived from multiple MODIS data products[J]. Journal of Great Lakes Research, 2017, 43(6): 989 - 998. |
60 | Qi Miaomiao, Yao Xiaojun, Li Xiaofeng, et al. Spatial-temporal characteristics of ice phenology of Qinghai Lake from 2000 to 2016[J]. Acta Geographica Sinica, 2018(5). |
祁苗苗, 姚晓军, 李晓锋, 等. 2000—2016年青海湖湖冰物候特征变化[J]. 地理学报, 2018, 73(5): 932 - 944. | |
61 | Hall D K, Riggs G A, Salomonson V V, et al. Algorithm theoretical basis document (ATBD) for the MODIS snow and sea ice-mapping algorithms[R]. Greenbelt, MD, USA: Technical Report NASA EOS-MODIS, 2001. |
62 | Qiu Yubao, Xie Pengfei, Leppäranta M, et al. MODIS-based Daily Lake Ice Extent and Coverage dataset for Tibetan Plateau[J]. Big Earth Data, 2019, 39(2): 170 - 185. |
63 | Heron R, Woo M. Decay of a High Arctic lake-ice cover: observations and modelling[J]. Journal of Glaciology, 1994, 40(135): 283 - 292. |
64 | Reed B, Budde M, Spencer P, et al. Integration of MODIS-derived metrics to assess interannual variability in snowpack, lake ice, and NDVI in southwest Alaska[J]. Remote Sensing of Environment, 2009, 113(7): 1443 - 1452. |
65 | Kheyrollah Pour H, Duguay C R, Martynov A, et al. Simulation of surface temperature and ice cover of large northern lakes with 1-D models: a comparison with MODIS satellite data and in situ measurements[J]. Tellus A: Dynamic Meteorology and Oceanography, 2012, 64(1): 17614. |
66 | Walker A E, Davey M R. Observation of Great Slave Lake ice freeze-up and break-up processes using passive microwave satellite data[C]//Proceedings of the 16th Canadian Symposium on Remote Sensing, 1993. |
67 | Che Tao, Li Xin, Jin Rui. Monitoring the frozen duration of Qinghai Lake using satellite passive microwave remote sensing low frequency data[J]. Chinese Science Bulletin, 2009, 54(13): 2294 - 2299. |
68 | Kang K, Duguay C R, Lemmetyinen J, et al. Estimation of ice thickness on large northern lakes from AMSR-E brightness temperature measurements[J]. Remote sensing of environment, 2014, 150: 1 - 19. |
69 | Yu Jinyuan, Zhang Guoqing, Yao Tandong, et al. Developing daily cloud-free snow composite products from MODIS Terra-Aqua and IMS for the Tibetan plateau[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 54(4): 2171 - 2180. |
70 | Ruan Yongjian, Passive microwave remote sensing of lake ice freeze-thaw monitoring over high Asia[D]. Ganzhou: Jiangxi University of Science and Technology, 2017. [阮永俭. 被动微波高亚洲湖冰冻融监测研究[D]. 赣州: 江西理工大学, 2017.] |
71 | Troy B E, Hollinger J P, Lerner R M, et al. Measurement of the microwave properties of sea ice at 90 GHz and lower frequencies[J]. Journal of Geophysical Research: Oceans, 1981, 86(C5): 4283 - 4289. |
72 | Cavalieri D J. A microwave technique for mapping thin sea ice[J]. Journal of Geophysical Research: Oceans, 1994, 99(C6): 12561 - 12572. |
73 | Kurtz N T, Markus T. Satellite observations of Antarctic sea ice thickness and volume[J]. Journal of Geophysical Research: Oceans, 2012, 117: C08025. |
74 | French N, Savage S, Shuchman R, et al. Remote sensing of frozen lakes on the North Slope of Alaska: IGARSS 2004[C]//2004 IEEE International Geoscience and Remote Sensing Symposium, 2004. |
75 | Kouraev A V, Semovski S V, Shimaraev M N, et al. Observations of Lake Baikal ice from satellite altimetry and radiometry[J]. Remote Sensing of Environment, 2007, 108(3): 240 - 253. |
76 | Rodhe B. On the relation between air temperature and ice formation in the Baltic[J]. Geografiska annaler, 1952, 34(3/4): 175 - 202. |
77 | Robertson D M, Ragotzkie R A, Magnuson J J. Lake ice records used to detect historical and future climatic changes[J]. Climatic Change, 1992, 21(4): 407 - 427. |
78 | McFadden J D. The interrelationship of lake ice and climate in central Canada[R]. Wisconsin Univ-Madison Dept of Meteorology, 1965. |
79 | Marsh P. Evaporation and ice growth in Mackenzie Delta lakes[R]. IAHS, Wallingford, 1991. |
80 | Patterson J C, Hamblin P F. Thermal simulation of a lake with winter ice cover 1[J]. Limnology and Oceanography, 1988, 33(3): 323 - 338. |
81 | Duguay C R, Flato G M, Jeffries M O, et al. Ice‐cover variability on shallow lakes at high latitudes: model simulations and observations[J]. Hydrological Processes, 2003, 17(17): 3465 - 3483. |
82 | Walsh S E, Vavrus S J, Foley J A, et al. Global patterns of lake ice phenology and climate: Model simulations and observations[J]. Journal of Geophysical Research: Atmospheres, 1998, 103(D22): 28825 - 28837. |
83 | Liston G E, Hall D K. Sensitivity of lake freeze-up and break-up to climate change: a physically based modeling study[J]. Annals of Glaciology, 1995, 21: 387 - 393. |
84 | Thiery W, Martynov A, Darchambeau F, et al. Understanding the performance of the FLake model over the African Great Lakes[J]. Geoscientific Model Development Discussions, 2013, 6(4): 1 - 12. |
85 | Duguay C, Surdu C, Brown L, et al. Response of ice cover on shallow Arctic lakes to contemporary climate conditions: numerical modeling and remote sensing data analysis[C]//EGU General Assembly Conference Abstracts, 2012. |
86 | Wang Jia, Hu Haoguo, Schwab D, et al. Development of the Great Lakes ice-circulation model (GLIM): application to Lake Erie in 2003-2004[J]. Journal of Great Lakes Research, 2010, 36(3): 425 - 436. |
87 | Ward J C. Ice phenomena in the lake district[M]. Nature Publishing Group, 1875. |
88 | Wang Xuanji, Key J R, Liu Yinghui. A thermodynamic model for estimating sea and lake ice thickness with optical satellite data[J]. Journal of Geophysical Research: Oceans, 2010, 115: C12035. |
89 | Rouse W R. Ice-cover variability on shallow lakes at high latitudes: model simulations and observations[J]. Hydrological Processes, 2010, 17(17): 3465 - 3483. |
90 | Leppäranta M. Freezing of lakes and the evolution of their ice cover[M]. Springer Science & Business Media, 2014. |
91 | Duguay C R, Bernier M, Gauthier Y, et al. Remote sensing of lake and river ice[J]. Remote sensing of the cryosphere, 2015: 273 - 306. |
92 | Gou Peng, Ye Qinghua, Wei Qiufang. Lake ice change at the Nam Co Lake on the Tibetan Plateau during 2000-2013 and influencing factors[J]. Progress in Geography, 2015, 34(10): 1241 - 1249. |
勾鹏, 叶庆华, 魏秋方. 2000—2013年西藏纳木错湖冰变化及其影响因素[J]. 地理科学进展, 2015, 34(10): 1241 - 1249. | |
93 | Qu Bin, Kang Shichang, Chen Feng, et al. Lake Ice and Its Effect Factors in the Nam Co Basin, Tibetan Plateau[J]. Advances in Climate Change Research, 2012, 8(5): 327 - 333. |
曲斌, 康世昌, 陈峰, 等. 2006—2011 年西藏纳木错湖冰状况及其影响因素分析[J]. 气候变化研究进展, 2012, 8(5): 327 - 333. | |
94 | Tao Anqi. Research on the Variation of Namco Lake Ice by Passive Microwave Remote Sensing[D]. Nanjing University, 2014. |
陶安琪. 被动微波遥感纳木错湖冰变化研究[D]. 南京大学, 2014. | |
95 | Cai Yu, Ke Changqing, Zheng Duan. Monitoring ice variations in Qinghai Lake from 1979 to 2016 using passive microwave remote sensing data[J]. Science of the Total Environment, 2017, 607: 120 - 131. |
96 | Yao Xiaojun, Li Long, Zhao Jun, et al. Spatial-temporal variations of lake ice in the Hoh Xil region from 2000 to 2011[J]. Acta Geographica Sinica, 2015, 70(7): 1114 - 1124. |
姚晓军, 李龙, 赵军, 等. 近10年来可可西里地区主要湖泊冰情时空变化[J]. 地理学报, 2015, 70(7): 1114 - 1124. | |
97 | Cai Yu, Ke Changqing, Li X, et al. Variations of Lake Ice Phenology on the Tibetan Plateau from 2001 to 2017 Based on MODIS Data[J]. Journal of Geophysical Research Atmospheres, 2019. |
98 | Liu Yong, Chen Huopo, Wang Huijun, et al. The impact of the NAO on the delayed break-up date of lake ice over the southern Tibetan Plateau[J]. Journal of Climate, 2018, 31(22): 9073 - 9086. |
99 | Kropáček J, Maussion F, Chen F, et al. Analysis of ice phenology of lakes on the Tibetan Plateau from MODIS data[J]. The Cryosphere, 2013, 7(1): 287 - 301. |
100 | Wang Zhiying, Wu Yanhong, Chang Jun, et al. Temporal and spatial variation of lake ice phenology and its influencing factors in the Tibetan Plateau[J]. Journal of Beijing University of Technology, 2017, 43(5): 701 - 709. |
王智颖, 吴艳红, 常军, 等. 青藏高原湖冰物候的时空变化及其影响因素[J]. 北京工业大学学报, 2017, 43(5): 701 - 709. | |
101 | Ashton G D. River and lake ice thickening, thinning, and snow ice formation[J]. Cold Regions Science and Technology, 2011, 68(1/2): 3 - 19. |
102 | Surdu C M, Duguay C R, Brown L C, et al. Response of ice cover on shallow lakes of the North Slope of Alaska to contemporary climate conditions (1950-2011): radar remote-sensing and numerical modeling data analysis[J]. The Cryosphere, 2014, 8(1): 167 - 180. |
103 | Tedesco M. Remote sensing of the cryosphere[M]. John Wiley & Sons, 2014. |
104 | Kang K, Duguay C R, Howell S E, et al. Sensitivity of AMSR-E brightness temperatures to the seasonal evolution of lake ice thickness[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(4): 751 - 755. |
105 | Brown L C, Duguay C R. The fate of lake ice in the North American Arctic[J]. The Cryosphere, 2011, 5(4): 869. |
106 | Arp C D, Jones B M, Liljedahl A K, et al. Depth, ice thickness, and ice‐out timing cause divergent hydrologic responses among Arctic lakes[J]. Water Resources Research, 2015, 51(12): 9379 - 9401. |
107 | Latifovic R, Pouliot D. Analysis of climate change impacts on lake ice phenology in Canada using the historical satellite data record[J]. Remote Sensing of Environment, 2007, 106(4): 492 - 507. |
108 | Surdu C M, Duguay C R, Fernández Prieto D. Evidence of recent changes in the ice regime of lakes in the Canadian High Arctic from spaceborne satellite observations[J]. The Cryosphere, 2016, 10(3): 941 - 960. |
109 | Weyhenmeyer G A, Meili M, Livingstone D M. Systematic differences in the trend towards earlier ice-out on Swedish lakes along a latitudinal temperature gradient[J]. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen, 2005, 29(1): 257 - 260. |
110 | Arp C D, Jones B M, Lu Z, et al. Shifting balance of thermokarst lake ice regimes across the Arctic Coastal Plain of northern Alaska[J]. Geophysical Research Letters, 2012, 39(16). |
111 | Zhang Tingjun, Jeffries M O. Modeling interdecadal variations of lake-ice thickness and sensitivity to climatic change in northernmost Alaska[J]. Annals of Glaciology, 2000, 31: 339 - 347. |
112 | Ménard P, Duguay C R, Flato G M, et al. Simulation of ice phenology on Great Slave Lake, Northwest Territories, Canada[J]. Hydrological Processes, 2002, 16(18): 3691 - 3706. |
113 | Pour H K, Duguay C R, Scott K A, et al. Improvement of lake ice thickness retrieval from MODIS satellite data using a thermodynamic model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10): 5956 - 5965. |
114 | Morris K, Jeffries M, Duguay C. Model simulation of the effects of climate variability and change on lake ice in central Alaska, USA[J]. Annals of Glaciology, 2005, 40: 113 - 118. |
115 | Brown R D, Cote P. Interannual variability of landfast ice thickness in the Canadian High Arctic, 1950-89[J]. Arctic, 1992: 273 - 284. |
116 | Cheng Bin, Vihma T, Rontu L, et al. Evolution of snow and ice temperature, thickness and energy balance in Lake Orajärvi, northern Finland[J]. Tellus A: Dynamic Meteorology and Oceanography, 2014, 66(1): 21564. |
117 | Livingstone D M. Break-up dates of alpine lakes as proxy data for local and regional mean surface air temperatures[J]. Climatic Change, 1997, 37(2): 407 - 439. |
118 | Heino R, Tuomenvirta H, Vuglinsky V S, et al. Past and current climate change[M]//Assessment of climate change for the Baltic Sea basin. Springer, 2008: 35 - 131. |
119 | Qin Dahe, Yao Tandong, Ding Yongjian. Introduction to Cryosphere Science[M]. Beijing: Science Press, 2017. |
秦大河, 姚檀栋, 丁永建. 冰冻圈科学概论[M]. 北京: 科学出版社, 2017. | |
120 | Leppäranta M, Terzhevik A, Shirasawa K. Solar radiation and ice melting in Lake Vendyurskoe, Russian Karelia[J]. Hydrology Research, 2009, 41(1): 50 - 62. |
121 | Nõges P, Nõges T. Weak trends in ice phenology of Estonian large lakes despite significant warming trends[J]. Hydrobiologia, 2014, 731(1): 5 - 18. |
122 | Ghanbari R N, Bravo H R, Magnuson J J, et al. Coherence between lake ice cover, local climate and teleconnections (Lake Mendota, Wisconsin)[J]. Journal of Hydrology, 2009, 374(3-4): 282 - 293. |
123 | Rouse W R, Blanken P D, Duguay C R, et al. Climate-lake interactions[M]. Springer Berlin Heidelberg, 2008. |
124 | Zheng Mianping, Xiang Jun, Wei Xinjun, et al. Saline lakes of Tibetan Plateau[M]. Beijing: Beijing Science and Technology Press, 1989. |
郑绵平, 向军, 魏新俊, 等. 青藏高原盐湖[M]. 北京: 北京科学技术出版社, 1989. | |
125 | Walsh J E, Anisimov O, Hagen J, et al. Cryosphere and hydrology. Arctic climate impacts assessment, ACIA[M]. Cambridge University Press, Cambridge, 2005. |
126 | Bates B C, Kundzewicz Z W, Wu S. Climate change and water[M]//Palutikof J P. Technical Paper of the Intergovernmental Panel on Climate Change. IPCC, Geneva, 2008. |
127 | Brown L, Derksen C, Duguay C R, et al. Modelling lake ice and the future of the Arctic lake ice cover[R]. AGU Fall Meeting Abstracts, 2014. |
128 | Reist J D, Wrona F J, Prowse T D, et al. Effects of climate change and UV radiation on fisheries for arctic freshwater and anadromous species[J]. AMBIO: A Journal of the Human Environment, 2006, 35(7): 402 - 411. |
129 | Vincent W F, Hobbie J E, Laybourn-Parry J. Introduction to the limnology of high-latitude lake and river ecosystems[M]//Vincent W F. and Laybourn-Parry J. Polar lakes and rivers: limnology of Arctic and Antarctic aquatic ecosystems. Oxford University Press, UK, 2008: 1 - 23. |
130 | Wrona F J, Prowse T D, Reist J D, et al. Freshwater ecosystems and fisheries[M]//Arctic Climate Impact Assessment. NY: Cambridge University Press, 2005: 354 - 452. |
131 | Vincent W F, Rautio M, Pienitz R. Climate control of biological UV exposure in polar and alpine aquatic ecosystems[M]//Arctic Alpine ecosystems and people in a changing environment. Springer, 2007: 227 - 249. |
[1] | 周雪飞, 徐嘉, 张绪冰. 基于Sentinel-1卫星数据的北极西北航道通航适宜性分析[J]. 冰川冻土, 2022, 44(1): 117-132. |
[2] | 陈龙飞, 张万昌, 高会然. 三江源地区1980—2019年积雪时空动态特征及其对气候变化的响应[J]. 冰川冻土, 2022, 44(1): 133-146. |
[3] | 李艳, 金会军, 温智, 赵子龙, 金晓颖. 多年冻土区斜坡稳定性研究综述[J]. 冰川冻土, 2022, 44(1): 203-216. |
[4] | 刘金平, 任艳群, 张万昌, 陶辉, 易路. 雅鲁藏布江流域气候和下垫面变化对径流的影响研究[J]. 冰川冻土, 2022, 44(1): 275-287. |
[5] | 达伟, 王书峰, 沈永平, 陈安安, 毛炜峄, 张伟. 1957—2019年昆仑山北麓车尔臣河流域水文情势及其对气候变化的响应[J]. 冰川冻土, 2022, 44(1): 46-55. |
[6] | 高文德,王昱,李宗省,王文胜,杨盛梅. 高寒内流区极端降水的气候变化特征分析[J]. 冰川冻土, 2021, 43(6): 1693-1703. |
[7] | 贺鹏真,谢周清. 氧同位素示踪夏季北冰洋(62.3°~74.7° N)大气硝酸盐形成途径的研究[J]. 冰川冻土, 2021, 43(5): 1344-1353. |
[8] | 唐志光,邓刚,胡国杰,王欣,蒋宗立,桑国庆. 亚洲高山区积雪物候时空动态及其对气候变化的响应[J]. 冰川冻土, 2021, 43(5): 1400-1411. |
[9] | 姚俊强,陈静,迪丽努尔·托列吾别克null,韩雪云,毛炜峄. 新疆气候水文变化趋势及面临问题思考[J]. 冰川冻土, 2021, 43(5): 1498-1511. |
[10] | 罗谨,王军邦,杨永胜,张光茹,祝景彬,贺慧丹,李英年. 1991—2015年三江源河曲高寒草甸干湿状况及牧草产量变化的气候归因研究[J]. 冰川冻土, 2021, 43(5): 1542-1550. |
[11] | 张齐民,闫世勇,吕明阳,张露,刘广. 高分三号山地冰川表面运动提取与分析[J]. 冰川冻土, 2021, 43(5): 1594-1605. |
[12] | 韩婷, 雷向杰, 李亚丽, 王毅勇. 秦岭区域性高山积雪事件变化特征分析[J]. 冰川冻土, 2021, 43(4): 1040-1048. |
[13] | 刘欣, 张绪冰, 王耀. 基于Landsat-8影像的北极地区入海冰川流速监测[J]. 冰川冻土, 2021, 43(4): 987-998. |
[14] | 游庆龙,康世昌,李剑东,陈德亮,翟盘茂,吉振明. 青藏高原气候变化若干前沿科学问题[J]. 冰川冻土, 2021, 43(3): 885-901. |
[15] | 蔡子怡,游庆龙,陈德亮,张若楠,陈金雷,康世昌. 北极快速增暖背景下冰冻圈变化及其影响研究综述[J]. 冰川冻土, 2021, 43(3): 902-916. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000