1 |
Zhang Ze, Ma Wei, Zhang Zhongqiong, et al. Application of spherical template indenter to long-term strength tests for frozen soil[J]. Rock and Soil Mechanics, 2012, 33(11): 3516 -3520.
|
|
张泽, 马巍, 张中琼, 等. 球形模板压入仪在冻土长期强度测试中的应用[J]. 岩土力学, 2012, 33(11): 3516 -3520.
|
2 |
Roman L T, Zhang Z. Effect of cycles of freezing and thawing on the physical and mechanical properties of moraine loam[J]. Soil Mechanics and Foundation Engineering, 2010, 47(3): 96 - 101.
|
3 |
Zhou Hong, Zhang Yuchuan, Zhang Ze, et al. Changing rule of long-term strength of frozen loess cohesion under impact of freeze-thaw cycle[J]. Rock and Soil Mechanics, 2014, 35(8): 2241 - 2254.
|
|
周泓, 张豫川, 张泽, 等. 冻融作用下冻结黄土黏聚力长期强度变化规律[J]. 岩土力学, 2014, 35(8): 2241 - 2254.
|
4 |
Zhou Hong. The changing rule of frozen loess long-term strength under freeze-thaw cycle[D]. Lanzhou: Lanzhou University, 2015.
|
|
周泓. 冻融循环作用下冻结黄土长期强度的变化规律[D]. 兰州: 兰州大学, 2015.
|
5 |
Fang Jianhong, Chen Xin, Xu Anhua, et al. Experimental study of the influence of freezing-thawing cycles on physical and mechanical properties of Qinghai-Tibet red clay[J]. Journal of Glaciology and Geocryology, 2018, 40(1): 62 - 69.
|
|
房建宏, 陈鑫, 徐安花, 等. 冻融循环对青藏红黏土物理力学性质影响试验研究[J]. 冰川冻土, 2018, 40(1): 62 - 69.
|
6 |
Wu Shengbao. Research on the determination of tensile properties of metal materials by continuous ball indentation technique[D]. Shanghai: East China University of Science and Technology, 2016.
|
|
伍声宝. 连续球压痕法表征金属材料拉伸性能的研究[D]. 上海: 华东理工大学, 2016.
|
7 |
Roman L T, Veretekhina É G. Determination of deformation characteristics of permafrost from impression of a spherical plate[J]. Soil Mechanics and Foundation Engineering, 2004, 41(2): 60 - 64.
|
8 |
Gao S H, Meng G, Long X H, et al. Study of milling stability with Hertz contact stiffness of ball bearings[J]. Archive of Applied Mechanics, 2011, 81(8): 1141 - 1151.
|
9 |
Lu W B, Ling X, Yang S S. A modified reference area method to estimate creep behavior of service-exposed Cr5Mo based on spherical indentation creep test[J/OL]. Vacuum, 2019, 169 [2020-02-24]. .
|
10 |
Huang C J, Zhang Z, Jin H J, et al. Comparison of modulus equations of frozen soil based on spherical template indenter[J/OL]. Cold Regions Science and Technology, 2020, 170 [2020-02-24]. .
|
11 |
Lee E H, Radok J R M. The contact problem for viscoelastic bodies[J]. Journal of Applied Mechanics, 1966, 27: 438 - 444.
|
12 |
Huang G, Lu H. Measurement of two independent viscoelastic functions by nanoindentation[J]. Experimental Mechanics, 2007, 47: 87 - 98.
|
13 |
Martynova E. Determination of the properties of viscoelastic materials using spherical nanoindentation[J/OL]. Mechanics of Time-Dependent Material, 2016, 20 [2020-02-24]. .
|
14 |
Hou Feng, Li Quanming, Liu Enlong, et al. A fractional creep constitutive model for frozen soil in consideration of the strengthening and weakening effects[J/OL]. Advances in Materials Science and Engineering, 2016 [2020-02-24]. .
|
15 |
Sun Kai, Chen Zhenglin, Chen Jian, et al. The frozen soil creep model based on fractional order theory[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(1): 19 -25.
|
|
孙凯, 陈正林, 陈剑, 等. 基于分数阶导数的冻土蠕变本构模型[J]. 地下空间与工程学报, 2018, 14(1): 19 - 25.
|
16 |
Laboratory methods for determining the strength and strain characteristics: GOST 12248-96 [S]. Moscow: Ministry of Construction and Housing of the Russian Federation, 1991.
|
|
Методы лабораторного определения характеристик прочности и деформируемости: ГОСТ 12248-96 [S]. Москва: Министрой России, 1991.
|
17 |
Ma Wei, Wu Ziwang, Sheng Yu. Creep and creep strength of frozen soil[J]. Journal of Glaciology and Geocryology, 1994, 16(2): 113 - 118.
|
|
马巍, 吴紫汪, 盛煜. 冻土的蠕变及蠕变强度[J]. 冰川冻土, 1994, 16(2): 113 - 118.
|
18 |
Su Teng, Zhou Hongwei, Zhao Jiawei, et al. A creep model of rock based on variable order fractional derivative[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(7): 1355 - 1363.
|
|
苏腾, 周宏伟, 赵家巍, 等. 基于变阶分数阶导数的岩石蠕变模型[J]. 岩石力学与工程学报, 2019, 38(7): 1355 - 1363.
|
19 |
Roman L T. Frozen soil mechanics[M]. Zhang Changqing, Zhang Ze, trans. Beijing: Science Press, 2016. [
|
|
罗曼Л Т. 冻土力学[M]. 张长庆, 张泽, 译. 北京: 科学出版社, 2016.]
|
20 |
Yin Deshun, He Chengliang, Chen Wen. Theory of geotechnical strain hardening index and its rational from fractional order calculus[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5): 762 - 766.
|
|
殷德顺, 和成亮, 陈文. 岩土应变硬化指数理论及其分数阶微积分理论基础[J]. 岩土工程学报, 2010, 32(5): 762 - 766.
|
21 |
Yershov E D. Mechanism of frozen soil: II[M]. Liu Jingren, Tong Boliang, trans. Lanzhou: Lanzhou University Press, 2015. [
|
|
叶尔绍夫Э Д. 冻土学原理: 第二册[M]. 刘经仁, 童伯良, 译. 兰州: 兰州大学出版社, 2015.]
|
22 |
Zhu Yuanlin, Zhang Jiayi. Elastic deformation and compression deformation of frozen soil[J]. Journal of Glaciology and Geocryology, 1982, 4(3): 29 - 39.
|
|
朱元林, 张家懿. 冻土的弹性变形及压缩变形[J]. 冰川冻土, 1982, 4(3): 29 - 39.
|
23 |
Zhao Shuping, Zhu Yuanlin, He Ping, et al. Testing study on dynamic parameters of frozen soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(): 2677 - 2681.
|
|
赵淑萍, 朱元林, 何平, 等. 冻土动力学参数测试研究[J]. 岩石力学与工程学报, 2003, 22(): 2677 - 2681.
|
24 |
Ning Jianguo, Wang Hui, Zhu Zhiwu, et al. Investigation of the constitutive model of frozen soil based on meso-mechanics[J]. Transactions of Beijing Institute of Technology, 2005, 25(10): 847 - 851.
|
|
宁建国, 王慧, 朱志武, 等. 基于细观力学方法的冻土本构模型研究[J]. 北京理工大学学报, 2005, 25(10): 847 - 851.
|
25 |
Wang Zhengzhong, Mu Shengyuan, Niu Yonghong, et al. Predictions of elastic constants and strength of transverse isotropic frozen soil[J]. Rock and Soil Mechanics, 2008, 29(11): 475 - 480.
|
|
王正中, 牟声远, 牛永红, 等. 横观各向同性冻土弹性常数及强度预测[J]. 岩土力学, 2008, 29(11): 475 - 480.
|
26 |
Xiao Donghui, Ma Wei, Zhao Shuping, et al. Study of the dynamic parameters of frozen soil: achievements and prospects[J]. Journal of Glaciology and Geocryology, 2015, 37(6): 1611 - 1626.
|
|
肖东辉, 马巍, 赵淑萍, 等. 冻土动力学参数研究的成果综述与展望[J]. 冰川冻土, 2015, 37(6): 1611 -1626.
|
27 |
Huang Fangyong, Mao Fen. Fractional derivative Burgers creep model of frozen sand soil by genetic algorithm[J]. Anhui Architecture, 2015, 22(6): 99 - 102.
|
|
黄方勇, 毛芬. 冻结砂土遗传算法分数阶导数Burgers蠕变模型[J]. 安徽建筑, 2015, 22(6): 99 - 102.
|
28 |
Li Mengjie. The fraction order visco-plastic creep model based on Perzyna model[J]. Lower Temperature Architecture Technology, 2016, 38(4): 139 - 141.
|
|
李梦洁. 基于Perzyna黏塑性分数阶导数蠕变模型[J]. 低温建筑技术, 2016, 38(4): 139 - 141.
|