冰川冻土 ›› 2021, Vol. 43 ›› Issue (1): 107-123.doi: 10.7522/j.issn.1000-0240.2021.0002
收稿日期:
2019-08-09
修回日期:
2020-06-11
出版日期:
2021-02-28
发布日期:
2021-04-06
作者简介:
宁宝英, 研究馆员, 主要从事生态经济与科技情报分析研究. E-mail: ningby@llas.ac.cn
基金资助:
Received:
2019-08-09
Revised:
2020-06-11
Online:
2021-02-28
Published:
2021-04-06
摘要:
在全球气候持续变暖背景下,北极地区冻土退化、冰川退缩、海冰减少等导致了一系列的生态环境问题,同时也使得资源勘探开发与国际新航道开通成为可能,北极地区的重要性日益凸显。依据2009—2019年6月期间有关北极研究的408篇ESI高影响论文,对发文量、主要作者、研究机构、国家、研究方向等字段进行分析,从自然科学角度,宏观而概要地了解北极研究中最具影响力的研究力量、研究领域,为中国的北极研究提供最精要的科研信息整体分析,并通过内容分析揭示北极研究中的重要方面和中国在当前北极研究中存在的问题及或可行的策略途径。分析发现:美国引领并以绝对优势(论文数量、主要作者、机构、资助基金)占据北极研究领域。北极自然科学研究已形成以气候变暖为核心和背景,辐射相关海冰和海洋、生物与典型生态系统(生物多样性适应与保护、北方针叶林、苔原、微生物)、冰川退缩与冻土退化、大气天气与气候系统等领域的整体研究格局,呈现全面推进态势。研究已取得大量进展,研究手段呈现出大数据支持、模型运算为主的显著特征,但“不确定性”几乎渗透在其各个方面。中国以合作参与、外围相关、微量切入的形式开展北极研究,存在多重限制因素,我国或可利用已有冰冻圈研究积累,积极参与各方面研究及数据共建共享,着重北极对中纬度气候影响等与我国社会经济密切相关的领域,从而为提升北极研究的科学话语权、为我国的防灾减灾和生态环境改善提供支持。
中图分类号:
宁宝英. ESI高影响论文揭示的北极自然科学研究特点[J]. 冰川冻土, 2021, 43(1): 107-123.
Baoying NING. ESI top papers reveal the characteristics in Arctic natural science research[J]. Journal of Glaciology and Geocryology, 2021, 43(1): 107-123.
表1
主要机构"
排序 | 发文量/篇 | 机构(国家) | 机构(中文名称) |
---|---|---|---|
1 | 90 | Univ Alaska | 阿拉斯加大学 |
2 | 80 | Univ Colorado | 科罗拉多大学 |
3 | 62 | NOAA | 美国国家海洋和大气管理局 |
4 | 61 | Univ Calif | 加利福尼亚大学 |
5 | 59 | Univ Washington | 华盛顿大学 |
6 | 50 | NASA | 美国国家航空航天局 |
7 | 38 | Natl Ctr Atmospher Res | 美国国家大气研究中心 |
8 | 30 | CALTECH | 加州理工学院 |
9 | 28 | Chinese Acad Sci(中国) | 中国科学院 |
10 | 27 | Stockholm Univ (瑞典) | 斯德哥尔摩大学 |
11 | 26 | Russian Acad Sci (俄罗斯) | 俄罗斯科学院 |
12 | 25 | Alfred Wegener Inst(德国)、Ohio State Univ | 阿尔弗雷德韦格纳研究所、俄亥俄州立大学 |
13 | 24 | Univ Alberta(加拿大)、Univ Utrecht(荷兰) | 阿尔伯塔大学、乌得勒支大学 |
14 | 21 | Columbia Univ | 哥伦比亚大学 |
表2
主要发文国家"
国家 | 全部作者/% | 国家 | 通讯作者/% | 国家 | 第一作者/% |
---|---|---|---|---|---|
USA(美国) | 40.45 | USA(美国) | 45.88 | USA(美国) | 45.59 |
UK(英国) | 9.08 | UK(英国) | 11.36 | UK(英国) | 12.25 |
Canada(加拿大) | 7.80 | Canada(加拿大) | 7.80 | Canada(加拿大) | 8.58 |
Germany(德国) | 6.11 | Germany(德国) | 6.01 | Germany(德国) | 6.13 |
Norway(挪威) | 5.00 | Norway(挪威) | 5.79 | Norway(挪威) | 5.39 |
France(法国) | 4.46 | Australia(澳大利亚) | 2.90 | Netherlands(荷兰) | 2.94 |
Australia(澳大利亚) | 2.90 | Netherlands(荷兰) | 2.90 | Australia(澳大利亚) | 2.70 |
Netherlands(荷兰) | 2.84 | Sweden(瑞典) | 2.67 | Sweden(瑞典) | 2.21 |
Sweden(瑞典) | 2.77 | Peoples R China(中国) | 2.45 | Others(其他) | 14.22 |
Denmark(丹麦) | 2.30 | Denmark(丹麦) | 2.23 | ||
Russia(俄罗斯) | 2.23 | Others(其他) | 10.02 | ||
Peoples R China(中国) | 2.19 | ||||
Switzerland(瑞士) | 2.16 | ||||
Others(其他) | 12.26 |
表3
主要基金资助机构"
基金资助机构 | 基金数量/项 | 中文名称 |
---|---|---|
全部基金总数 | 1 676 | |
NSF | 211 | 美国国家自然科学基金 |
Natural Environment Research Council UK | 104 | 英国自然环境研究委员会 |
NASA | 100 | 美国国家航空航天局 |
US Department of Energy | 69 | 美国能源部 |
EU | 68 | 欧盟 |
NOAA | 55 | 美国国家海洋和大气管理局 |
Natural Science and Engineering Research Council of Canada | 31 | 加拿大自然科学与工程研究委员会 |
Norwegian Research Council | 26 | 挪威研究委员会 |
USGS | 13 | 美国地质调查局 |
Australian Research Council | 13 | 澳大利亚研究委员会 |
Swedish Research Council | 12 | 瑞典研究委员会 |
Academy of Finland | 11 | 芬兰科学院 |
German Federal Ministry of Education and Research | 11 | 德国联邦教育和研究部 |
NSFC | 10 | 中国国家自然科学基金 |
表4
主要WOS类别和研究方向"
WOS类别/总频次602 | 占比/% | 研究方向/总频次571 | 占比/% |
---|---|---|---|
Geosciences,Multidisciplinary | 19.77 | Geology | 21.37 |
Meteorology & Atmospheric Sciences | 16.28 | Meteorology & Atmospheric Sciences | 17.16 |
Multidisciplinary Sciences | 13.95 | Environmental Sciences & Ecology | 16.11 |
Environmental Sciences | 11.63 | Science & Technology - Other Topics | 14.71 |
Oceanography | 5.65 | Oceanography | 5.95 |
Geography,Physical | 4.98 | Physical Geography | 5.25 |
Ecology | 4.82 | 其他 | 19.44 |
其他 | 22.92 |
表5
高频作者关键词"
频次 | 关键词(英文) | 关键词(对应的中文翻译) |
---|---|---|
45 | climate change | 气候变化 |
33 | Arctic | 北极 |
21 | sea ice | 海冰 |
8 | permafrost | 多年冻土 |
7 | climate、model | 气候、模式 |
6 | Arctic ocean、climate model | 北冰洋、气候模式 |
5 | boreal forest、prediction、snow | 北方针叶林、预报、雪 |
4 | Arctic amplification、Arctic oscillation、biogeography、blocking、circulation、climate-change impacts、feedback | 北极放大、北极涛动、生物地理学、阻塞、环流、气候变化影响、反馈 |
3 | aerosol、bacteria、carbon cycle、carbon dioxide、conservation、deglaciation、disturbance、diversity、dynamics、ecological niche、ensembles、fish、ocean、oceanography、phylogeography、plant functional type、population dynamics、remote sensing、temperature、temporal trend、vegetation | 气溶胶、细菌、碳循环、二氧化碳、保护、冰川退缩、干扰、多样性、动态、生态位、群落、鱼类、海洋、海洋学、系统地理学、植物功能类型、种群动态、遥感、温度、时间趋势、植被 |
表6
四个研究方向年度研究主题词或重要进展10年变化"
年份 | 海冰与海洋 | 生物与生态系统 | 冰川退缩与冻土退化 | 大气、天气和气候系统 |
---|---|---|---|---|
2009 | 淡水注入、海洋酸化、海冰对欧亚大陆冬季气候的影响 | 北极气候变暖的生态后果评估、对海洋生物多样性的影响 | 欧洲多年冻土变化的空间分布、冻土区CH4排放和径流增加 | CH4排放、北极变暖原因、天气变化的机制 |
2010 | 海冰减少对北极生态系统和北半球大陆冬季气候的影响、淡水注入、污染 | 氮沉积威胁植物多样性、生物代谢率对变暖的响应具有地域异质性、北极独特的土壤细菌群落多样性、水华、植物扩张 | 雪冰物理、冻土变暖 | CH4排放、北极放大的主导原因是海冰减少、大气组分和气候变暖因素、平流层气候和环流对温室气体增加和臭氧恢复的响应、气溶胶 |
2011 | 淡水注入、海平面上升、海洋酸化 | 气候变暖导致北极海洋生态系统发生明显变化、植物扩张、物种北移、驯鹿减少 | 冻土碳释放量和时间 | 气溶胶、发现气候变暖中的转折点 |
2012 | 淡水注入、海冰最小值 | 苔原植被生产力提高、高通量测序技术分离稀有细菌、浮游植物繁盛、苔藓的恢复力和功能 | 冰动力学 | CMIP5模型揭示气候变暖热点、北极放大与中纬度极端天气的关系、气候变暖信号识别、混合相云对北极的辐射通量有很大影响 |
2013 | 北极航道、海冰量估算、无冰期推测 | 北极森林火灾风险高、苔原被长期变暖重塑、植被变化预测、海洋食物链关键物种发现、二氧化碳季节性交换量增加 | 北极放大与中纬度极端天气间的机制联系、北方温度季节性减小、臭氧变化估算、大气边界层模拟、全球变暖的现实情况比报道的更加糟糕 | |
2014 | 海冰减少对天气和气候的影响、海冰融化期变长、污染物在海洋生物中富集 | 汞(来源、分布、食物链富集)、海洋渔获资源增加、北冰洋似从极地向温带模式转变、北极淡水中的碳处理受阳光控制、微生物(生理、分布、分解有机碳)、北极物种重大分布变化和丰度减少 | 冻土退化释放有机碳 | 北极放大对中纬度天气的影响、水合物渗漏 |
2015 | 淡水注入与输出、海冰减少对大气系统的影响、微塑料 | 北冰洋:底栖动物、水华、物种北移、哺乳动物栖息地变化、食物网结构改变、初级生产力提高;植物生理、微生物利用古碳、碳排放 | 冻土退化释放有机碳、冻土退化对淡水资源的影响、格陵兰冰盖本底数据(冰层厚度、潮水冰川崩解速率空间分布、冰流数量) | 北极放大对中纬度天气的影响、气溶胶、云微物理性质和过程 |
2016 | 淡水对北极海洋系统的影响、海冰减少及其对中纬度气候的影响、海冰变化趋势 | 全球变化影响生态系统稳态转换时可能叠加乘数效应、新指标“植被敏感性指数”证实北极苔原对气候变暖的反映增强、植物群落分类 | 冻土水文、冻土有机碳释放的净碳平衡估算 | CH4排放、北极放大对中纬度天气的影响、气溶胶 |
2017 | 海冰减少原因:淡水注入、夏季大气环流、表面混合层出现;海冰减少对中国霾天气和大西洋洋流的影响、海平面测算、污染 | 北极影响全球化风险管理、苔原吸收大气元素汞为北极汞污染重要原因、闪电是森林大活主要驱动力、北冰洋大陆架水域生物产量增加、苔原植物呼吸增加北极二氧化碳含量、变暖迫使叶片高温耐受性增强 | 格陵兰冰盖对海平面上升的贡献 | IPCC目前还不存在完全耦合的气候平衡模型来模拟和告知气候变暖的影响、北极放大对中纬度天气的影响、确定“工业前时期”的期限 |
2018 | 淡水注入、海冰减少对大气的影响、无冰情景预测、海冰和积雪量预测、海洋酸化、污染 | 底栖动物多样性、北冰洋汞的主要来源是北极的河流和海岸侵蚀、北极碳库失稳加剧、物种濒危多因人害 | 格陵兰冰盖对海平面上升的贡献、冻土水文、冻土退化对汞循环影响的估算 | 北极放大对中纬度天气的影响 |
共有词方正汇总行* | 海冰减少 | 格陵兰冰盖物质平衡亏损 | 北极放大 |
1 | Schoolmeester T, Gjerdi H L, Crump J,et al. Global Linkages:a graphic look at the changing Arctic (rev.1)[R]. UN Environment and GRID-Arendal,Nairobi and Arendal,2019. |
2 | Kjeldsen K K, Korsgaard N J, Bjork A A,et al. Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900[J]. Nature,2015,528(7582):396-400. |
3 | Pearson R G, Phillips S J, Loranty M M,et al. Shifts in Arctic vegetation and associated feedbacks under climate change[J]. Nature Climate Change,2013,3(7):673-677. |
4 | Dillon M E, Wang G, Huey R B. Global metabolic impacts of recent climate warming[J]. Nature,2010,467(7316):704-708. |
5 | Schuur E A G, Vogel J G, Crummer K G,et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra[J]. Nature,2009,459(7246):556-559. |
6 | China’s Arctic Strategy[EB/OL]. (2018-01-26) [2019-10-15]. . [ |
中国的北极政策[EB/OL]. (2018-01-26) [2019-10-15]. ] | |
7 | Yang Zhenjiao, Dong Hainan. An overview of researches in Arctic environment[J]. Journal of Ocean University of China (Social Sciences),2012(4):26-32. |
杨振姣,董海楠. 北极环境问题研究综述[J]. 中国海洋大学学报(社会科学版),2012(4):26-32. | |
8 | Yang Zhenjiao, Sun Xuemin, Xin Meijun. A review of the problem of energy security in the Arctic governance[J]. Journal of Ocean University of China (Social Sciences),2015(5):25-33. |
杨振姣,孙雪敏,辛美君. 北极能源安全问题研究综述[J]. 中国海洋大学学报(社会科学版),2015(5):25-33. | |
9 | Li Zhenfu, Chen Zhuo, Chen Xue,et al. Development of the Arctic passage and construction of the “silk road on ice”:a literature review[J]. Journal of Ocean University of China (Social Sciences),2018(6):7-18. |
李振福,陈卓,陈雪,等. 北极航线开发与“冰上丝绸之路”建设:一个文献综述[J]. 中国海洋大学学报(社会科学版),2018(6):7-18. | |
10 | Guo Nanrong, Hu Maixiu. A review:interests brought by the Arctic passage[J]. Ocean Development and Management,2018,35(10):51-54. |
郭楠蓉,胡麦秀.北极航道利益研究综述[J]. 海洋开发与管理,2018,35(10):51-54. | |
11 | Li Zhenfu, Wang Wenya, You Xue,et al. A review:problems of the Arctic and the Arctic passage[J]. Journal of Dalian Maritime University (Social Sciences Edition),2014,13(4):26-30. |
李振福,王文雅,尤雪,等. 北极及北极航线问题研究综述[J]. 大连海事大学学报(社会科学版),2014,13(4):26-30. | |
12 | Liu Yutong. Study on Arctic strategy of the United States from Obama Administration[D]. Changchun:Jilin University,2017. |
刘昱彤. 奥巴马政府以来的美国北极战略研究[D]. 长春:吉林大学,2017. | |
13 | Zhang Penfei. Research of the Arctic policy and decision-making mechanism of Russia[D]. Qingdao:Ocean University of China,2015. |
张朋飞. 俄罗斯北极政策及其决策机制研究[D]. 青岛:中国海洋大学,2015. | |
14 | Chen Xulun. The Arctic strategies between Russia and the United States after the cold war period[D]. Shanghai:Shanghai Normal University,2017. |
陈旭伦. 冷战后美俄北极战略研究[D]. 上海:上海师范大学,2017. | |
15 | Chen Fei. A comparative study of Arctic strategies between Russia and the United States and its implications for China[D]. Xiantan:Xiantan University,2012. |
陈飞. 俄美北极战略比较研究及其对中国的启示[D]. 湘潭:湘潭大学,2012. | |
16 | Niu Yibo, Zhang Shuliang, Zhao Jidong,et al. Comprehensive evaluation and analysis of the international polar research from 2010—2016[J]. Journal of Glaciology and Geocryology,2017,39(5):1039-1046. |
牛艺博,张树良,赵纪东,等. 2010—2016年国际极地研究综合评价分析[J]. 冰川冻土,2017,39(5):1039-1046. | |
17 | Yu Weiying, Wang Lin, Feng Zhigang,et al. Bibliometric analysis and development trends of global Arctic marine scientific research[J]. Marine Science,2018,42(10):64-81. |
於维樱,王琳,冯志纲,等. 1998—2017年国际北极地区海洋科学研究文献计量与发展态势[J]. 海洋科学,2018,42(10):64-81. | |
18 | Ye Binhong, Cheng Yang, Wang Li,et al. A systematic review of geo-relations research in the Arctic[J]. Progress in Geography,2019,38(4):489-505. |
叶滨鸿,程杨,王利,等. 北极地区地缘关系研究综述[J]. 地理科学进展,2019,38(4):489-505. | |
19 | Cavalieri D J, Parkinson C L. Arctic sea ice variability and trends,1979—2010[J]. Cryosphere,2012,6(4):881-889. |
20 | Parkinson C L, Comiso J C. On the 2012 record low Arctic sea ice cover:Combined impact of preconditioning and an August storm[J]. Geophysical Research Letters,2013,40(7):1-6. |
21 | Overland J E, Wang M Y. Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice[J]. Tellus Series A:Dynamic Meteorology and Oceanography,2010,62(1):1-9. |
22 | Zhang J L, Lindsay R, Schweiger A,et al. The impact of an intense summer cyclone on 2012 Arctic sea ice retreat[J]. Geophysical Research Letters,2013,40(4):720-726. |
23 | Ding Q H, Schweiger A, L'Heureux M,et al. Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice[J]. Nature Climate Change,2017,7(4):289-295. |
24 | Woods C, Caballero R. The role of moist intrusions in winter Arctic warming and sea ice decline[J]. Journal of Climate,2016,29(12):4473-4485. |
25 | Meyer A, Sundfjord A, Fer I,et al. Winter to summer oceanographic observations in the Arctic Ocean north of Svalbard[J]. Journal of Geophysical Research:Oceans,2017,122(8):6218-6237. |
26 | Carmack E C, Yamamoto-Kawai M, Haine T W N,et al. Freshwater and its role in the Arctic Marine System:Sources,disposition,storage,export,and physical and biogeochemical consequences in the Arctic and global oceans[J]. Journal of Geophysical Research:Biogeosciences,2016,121(3):675-717. |
27 | Proshutinsky A, Krishfield R, Timmermans M L,et al. Beaufort Gyre freshwater reservoir:State and variability from observations[J]. Journal of Geophysical Research:Oceans,2009,114:C00A10. DOI:10.1029/2008JC005104 . |
28 | Morison J, Kwok R, Peralta-Ferriz C,et al. Changing Arctic Ocean freshwater pathways[J]. Nature,2012,481(7379):66-70. |
29 | Woodgate R A. Increases in the Pacific inflow to the Arctic from 1990 to 2015,and insights into seasonal trends and driving mechanisms from year-round Bering Strait mooring data[J]. Progress in Oceanography,2018,160:124-154. |
30 | Kohl,A. Evaluation of the GECCO 2 ocean synthesis:transports of volume,heat and freshwater in the Atlantic[J]. Quarterly Journal of the Royal Meteorological Society,2015,141(686):166-181. |
31 | Polyakov I V, Pnyushkov A V, Alkire M B,et al. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean[J]. Science,2017,356(6335):285-292. |
32 | Spielhagen R F, Werner K, Sorensen S A,et al. Enhanced modern heat transfer to the Arctic by warm Atlantic water[J]. Science,2011,331(6016):450-453. |
33 | Smith M, Stammerjohn S, Persson O,et al. Episodic reversal of autumn ice advance caused by release of ocean heat in the Beaufort Sea[J]. Journal of Geophysical Research:Oceans,2018,123(5):3164-3185. |
34 | Thomson J, Rogers W E. Swell and sea in the emerging Arctic Ocean[J]. Geophysical Research Letters,2014,41(9):3136-3140. |
35 | Stammerjohn S, Massom R, Rind D,et al. Regions of rapid sea ice change:An inter-hemispheric seasonal comparison[J]. Geophysical Research Letters,2012,39:L06501. DOI:10.1029/2012GL050874 . |
36 | Perovich D K, Polashenski C. Albedo evolution of seasonal Arctic sea ice[J]. Geophysical Research Letters,2012,39:L08501. DOI:10.1029/2012GL051432 . |
37 | Stroeve J C, Markus T, Boisvert L,et al. Changes in Arctic melt season and implications for sea ice loss[J]. Geophysical Research Letters,2014,41(4):1216-1225. |
38 | Meier W N, Hovelsrud G K, van Oort B E H,et al. Arctic sea ice in transformation:A review of recent observed changes and impacts on biology and human activity[J]. Reviews of Geophysics,2014,52(3):185-217. |
39 | Liu J P, Curry J A, Wang H J,et al. Impact of declining Arctic sea ice on winter snowfall[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(11):4074-4079. |
40 | Tang Q H, Zhang X J, Yang X H,et al. Cold winter extremes in northern continents linked to Arctic sea ice loss[J]. Environmental Research Letters,2013,8(1):14036. DOI:10.1088/1748-9326/8/1/014036 . |
41 | Luo D H, Xiao Y Q, Yao Y,et al. Impact of Ural Blocking on winter Warm Arctic-Cold Eurasian Anomalies. Part I:blocking-induced amplification[J]. Journal of Climate,2016,29(11):3925-3947. |
42 | Petoukhov V, Semenov V A. A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents[J]. Journal of Geophysical Research:Atmospheres,2010,115:D21111. DOI:10.1029/2009JD013568 . |
43 | Mori M, Watanabe M, Shiogama H,et al. Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades[J]. Nature Geoscience,2014,7(12):869-873. |
44 | Honda M, Inoue J, Yamane S. Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters[J]. Geophysical Research Letters,2009,36:L08707. DOI:10.1029/2008GL037079 . |
45 | Francis J A, Chan W H, Leathers D J,et al. Winter northern hemisphere weather patterns remember summer Arctic sea-ice extent[J]. Geophysical Research Letters,2009,36:L07503. DOI:10.1029/2009GL037274 . |
46 | Zou Y F, Wang Y H, Zhang Y Z,et al. Arctic sea ice,Eurasia snow,and extreme winter haze in China[J]. Science Advances,2017,3:e1602751. DOI:10.1126/sciadv.1602751 . |
47 | Wang H J, Chen H P. Understanding the recent trend of haze pollution in eastern China:roles of climate change[J]. Atmospheric Chemistry and Physics,2016,16(6):4205-4211. |
48 | Post E, Bhatt U S, Bitz C M,et al. Ecological consequences of sea-ice decline[J]. Science,2013,341(6145):519-524. |
49 | Sevellec F, Fedorov A V, Liu W. Arctic sea-ice decline weakens the Atlantic meridional overturning circulation[J]. Nature Climate Change,2017,7(8):604-610. |
50 | Smith L C, Stephenson S R. New Trans-Arctic shipping routes navigable by midcentury[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(13):E1191-E1195. |
51 | Pankhurst N W, Munday P L. Effects of climate change on fish reproduction and early life history stages[J]. Marine and Freshwater Research,2011,62(9):1015-1026. |
52 | Arrigo K R, van Dijken G L. Continued increases in Arctic Ocean primary production[J]. Progress in Oceanography,2015,136:60-70. |
53 | Boetius A, Albrecht S, Bakker K,et al. Export of algal biomass from the melting Arctic sea ice[J]. Science,2013,339(6126):1430-1432. |
54 | Li W K W, McLaughlin F A, Lovejoy C,et al. Smallest algae thrive as the Arctic Ocean freshens[J]. Science,2009,326(5952):539-539. |
55 | Arrigo K R, Perovich D K, Pickart R S,et al. Massive phytoplankton blooms under Arctic sea ice[J]. Science,2012,336(6087):1408-1409. |
56 | Haug T, Bogstad B, Chierici M,et al. Future harvest of living resources in the Arctic Ocean north of the Nordic and Barents Seas:a review of possibilities and constraints[J]. Fisheries Research,2017,188:38-57. |
57 | Fossheim M, Primicerio R, Johannesen E,et al. Recent warming leads to a rapid borealization of fish communities in the Arctic[J]. Nature Climate Change,2015,5(7):673-677. |
58 | Myers-Smith I H, Forbes B C, Wilmking M,et al. Shrub expansion in tundra ecosystems:dynamics,impacts and research priorities[J]. Environmental Research Letters,2011,6:45509. DOI:10.1088/1748-9326/6/4/045509 . |
59 | Hallinger M, Manthey M, Wilmking M. Establishing a missing link:warm summers and winter snow cover promote shrub expansion into alpine tundra in Scandinavia[J]. New Phytologist,2010,186(4):890-899. |
60 | Sistla S A, Moore J C, Simpson R T,et al. Long-term warming restructures Arctic tundra without changing net soil carbon storage[J]. Nature,2013,497(7451):615-618. |
61 | Wullschleger S D, Epstein H E, Box E O,et al. Plant functional types in Earth system models:past experiences and future directions for application of dynamic vegetation models in high-latitude ecosystems[J]. Annals of Botany,2014,114(1):1-16. |
62 | Seddon A W R, Macias-Fauria M, Long P R,et al. Sensitivity of global terrestrial ecosystems to climate variability[J]. Nature,2016,531(7593):229-232. |
63 | Kelly R, Chipman M L, Higuera P E,et al. Recent burning of boreal forests exceeds fire regime limits of the past 10 000 years[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(32):13055-13060. |
64 | Veraverbeke S, Rogers B M, Goulden M L,et al. Lightning as a major driver of recent large fire years in North American boreal forests[J]. Nature Climate Change,2017,7(7):529-534. |
65 | Laidre K L, Stern H, Kovacs K M,et al. Arctic marine mammal population status,sea ice habitat loss,and conservation recommendations for the 21st century[J]. Conservation Biology,2015,29(3):724-737. |
66 | Kjesbu O S, Bogstad B, Devine J A,et al. Synergies between climate and management for Atlantic cod fisheries at high latitudes[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(9):3478-3483. |
67 | Erkinaro J, Czorlich Y, Orell P,et al. Life history variation across four decades in a diverse population complex of Atlantic salmon in a large subarctic river[J]. Canadian Journal of Fisheries and Aquatic Sciences,2019,76(1):42-55. |
68 | Cheung W W L, Lam V W Y, Sarmiento J L,et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change[J]. Global Change Biology,2010,16(1):24-35. |
69 | Wassmann P, Duarte C M, Agusti S,et al. Footprints of climate change in the Arctic marine ecosystem[J]. Global Change Biology,2011,17(2):1235-1249. |
70 | Knief C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker[J]. Frontiers in Microbiology,2015,6:1346. DOI:10.3389/fmicb.2015.01346 . |
71 | Chu H Y, Fierer N, Lauber C L,et al. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes[J]. Environmental Microbiology,2010,12(11):2998-3006. |
72 | Bergmann M, Wirzberger V, Krumpen T,et al. High quantities of microplastic in Arctic deep-sea sediments from the HAUSGARTEN Observatory[J]. Environmental Science Technology,2017,51(19):11000-11010. |
73 | Cozar A, Marti E, Duarte C M,et al. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the Thermohaline Circulation[J]. Science Advances,2017,3(4):e1600582. DOI:10.1126/sciadv.1600582 . |
74 | Lusher A L, Tirelli V, O’Connor I,et al. Microplastics in Arctic polar waters:the first reported values of particles in surface and sub-surface samples[J]. Scientific Reports,2015,5:14947. DOI:10.1038/srep14947 . |
75 | Walker T W, Jones D B A, Parrington M,et al. Impacts of midlatitude precursor emissions and local photochemistry on ozone abundances in the Arctic[J]. Journal of Geophysical Research:Atmospheres,2012,117:D01305. DOI:10.1029/2011JD016370 . |
76 | Box J E, Fettweis X, Stroeve J C,et al. Greenland ice sheet albedo feedback:thermodynamics and atmospheric drivers[J]. Cryosphere 2012,6(4):821-839. |
77 | Machguth H, MacFerrin M, van As D,et al. Greenland meltwater storage in firn limited by near-surface ice formation[J]. Nature Climate Change,2016,6(4):390-393. |
78 | Straneo F, Hamilton G S, Sutherland D A,et al. Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland[J]. Nature Geoscience,2010,3(3):182-186. |
79 | Luckman A, Benn D I, Cottier F,et al. Calving rates at tidewater glaciers vary strongly with ocean temperature[J]. Nature Communications,2015,6:8566. DOI:10.1038/ncomms9566 . |
80 | Enderlin E M, Howat I M, Jeong S,et al. An improved mass budget for the Greenland ice sheet[J]. Geophysical Research Letters,2014,41(3):866-872. |
81 | Gardner A S, Moholdt G, Wouters B,et al. Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago[J]. Nature,2011,473(7347):357-360. |
82 | Tedesco M, Fettweis X, Mote T,et al. Evidence and analysis of 2012 Greenland records from spaceborne observations,a regional climate model and reanalysis data[J]. Cryosphere,2013,7(2):615-630. |
83 | Nghiem S V, Hall D K, Mote T L,et al. The extreme melt across the Greenland ice sheet in 2012[J]. Geophysical Research Letters,2012,39:L20502. DOI:10.1029/2012GL053611 . |
84 | Moon T, Joughin I, Smith B,et al. 21st-century evolution of Greenland outlet glacier velocities[J]. Science,2012,336(6081):576-578. |
85 | Hoffman M J, Perego M, Andrews L C,et al. Widespread Moulin formation during supraglacial lake drainages in Greenland[J]. Geophysical Research Letters,2018,45(2):778-788. |
86 | Doyle S H, Hubbard B, Christoffersen P,et al. Physical conditions of fast glacier flow:1. Measurements from boreholes drilled to the bed of store glacier,west Greenland[J]. Journal of Geophysical Research:Earth Surface,2018,123(2):324-348. |
87 | Sundal A V, Shepherd A, Nienow P,et al. Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage[J]. Nature,2011,469(7331):521-524. |
88 | Margold M, Stokes C R, Clark C D. Ice streams in the Laurentide Ice Sheet:Identification,characteristics and comparison to modern ice sheets[J]. Earth-Science Reviews,2015,143:117-146. |
89 | Van Tricht K, Lhermitte S, Lenaerts J T M,et al. Clouds enhance Greenland ice sheet meltwater runoff[J]. Nature Communications,2016,7:10266. DOI:10.1038/ncomms10266 . |
90 | Bennartz R, Shupe M D, Turner D D,et al. July 2012 Greenland melt extent enhanced by low-level liquid clouds[J]. Nature,2013,496(7443):83-86. |
91 | Ryan J C, Hubbard A, Stibal M,et al. Dark zone of the Greenland Ice Sheet controlled by distributed biologically-active impurities[J]. Nature Communications,2018,9:1065. DOI:10.1038/s41467-018-03353-2 . |
92 | Romanovsky V E, Smith S L, Christiansen H H. Permafrost thermal state in the polar northern hemisphere during the international polar year 2007—2009:a synthesis[J]. Permafrost Periglacial Process,2010,21(2):106-116. |
93 | Bring A, Fedorova I, Dibike Y,et al. Arctic terrestrial hydrology:a synthesis of processes,regional effects,and research challenges[J]. Journal of Geophysical Research:Biogeosciences,2016,121(3):621-649. |
94 | Ala-aho P, Soulsby C, Pokrovsky O S,et al. Using stable isotopes to assess surface water source dynamics and hydrological connectivity in a high-latitude wetland and permafrost influenced landscape[J]. Journal of Hydrology,2018,556:279-293. |
95 | Liljedahl A K, Boike J, Daanen R P,et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology[J]. Nature Geoscience,2016,9(4):312-318. |
96 | Walvoord M A, Kurylyk B L. Hydrologic impacts of thawing permafrost:a review[J]. Vadose Zone Journal,2016,15(6). DOI:10.2136/vzj2016.01.0010 . |
97 | Dlugokencky E J, Bruhwiler L, White J W C. Observational constraints on recent increases in the atmospheric CH4 burden[J]. Geophysical Research Letters,2009,36:L18803. DOI:10.1029/2009GL039780 . |
98 | Bloom A A, Palmer P I, Fraser A,et al. Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data[J]. Science,2010,327(5963):322-325. |
99 | Guimberteau M, Zhu D, Maignan F,et al. ORCHIDEE-MICT (v8.4.1),a land surface model for the high latitudes:model description and validation[J]. Geoscientific Model Development,2018,11(1):121-163. |
100 | Schaefer H, Fletcher S E M, Veidt C,et al. A 21st-century shift from fossil-fuel to biogenic methane emissions indicated by CH4-C-13[J]. Science,2016,352(6281):80-84. |
101 | Sun Xiaoxin, Song Changchun, Wang Xianwei,et al. Effect of permafrost degradation on methane emission in wetlands:a review[J]. Acta Ecologica Sinica,2011,31(18):5379-5386. |
孙晓新,宋长春,王宪伟,等. 多年冻土退化对湿地甲烷排放的影响研究进展[J]. 生态学报,2011,31(18):5379-5386. | |
102 | Shakhova N, Semiletov I, Salyuk A,et al. Extensive methane venting to the atmosphere from sediments of the east siberian Arctic shelf[J]. Science,2010,327(5970):1246-1250. |
103 | Westbrook G K, Thatcher K E, Rohling E J,et al. Escape of methane gas from the seabed along the West Spitsbergen continental margin[J]. Geophysical Research Letters,2009,36:L15608. DOI:10.1029/2009GL039191 . |
104 | Ruppel C D, Kessler J D. The interaction of climate change and methane hydrates[J]. Reviews of Geophysics,2017,55(1):126-168. |
105 | Berndt C, Feseker T, Treude T,et al. Temporal constraints on hydrate-controlled methane seepage off Svalbard[J]. Science,2014,343(6168):284-287. |
106 | Wofsy S C. HIAPER Pole-to-Pole Observations (HIPPO):fine-grained,global-scale measurements of climatically important atmospheric gases and aerosols[J]. Philosophical Transactions of the Royal Society A:Mathematical Physical and Engineering Sciences,2011,369(1943):2073-2086. |
107 | Cubison M J, Ortega A M, Hayes P L,et al. Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies[J]. Atmospheric Chemistry and Physics,2011,11(23):12049-12064. |
108 | Kawamura K, Bikkina S. A review of dicarboxylic acids and related compounds in atmospheric aerosols:Molecular distributions,sources and transformation[J]. Atmospheric Research,2016,170:140-160. |
109 | Overland J E, Dethloff K, Francis J A,et al. Nonlinear response of mid-latitude weather to the changing Arctic[J]. Nature Climate Change,2016,6(11):992-999. |
110 | Overland J, Francis J A, Hall R,et al. The Melting Arctic and mid-latitude weather patterns:are they connected?[J]. Journal of Climate,2015,28:7917-7932. |
111 | Sun L, Perlwitz J, Hoerling M. What caused the recent "Warm Arctic,Cold Continents" trend pattern in winter temperatures?[J]. Geophysical Research Letters,2016,43(10):5345-5352. |
112 | Yao Y, Luo D H, Dai A G,et al. Increased quasi stationarity and persistence of winter Ural Blocking and Eurasian extreme cold events in response to Arctic warming. Part I:Insights from observational analyses[J]. Journal of Climate,2017,30(10):3549-3568. |
113 | Cohen J, Pfeiffer K, Francis J A. Warm Arctic episodes linked with increased frequency of extreme winter weather in the United States[J]. Nature Communications,2018,9:869. DOI:10.1038/s41467-018-02992-9 . |
114 | Kretschmer M, Coumou D, Agel L,et al. More-persistent weak stratospheric polar vortex states linked to cold extremes[J]. Bulletin of the American Meteorological Society,2018,99(1):49-60. |
115 | Kug J S, Jeong J H, Jang Y S,et al. Two distinct influences of Arctic warming on cold winters over North America and East Asia[J]. Nature Geoscience,2015,8(10):759-762. |
116 | Walsh J E. Intensified warming of the Arctic:causes and impacts on middle latitudes[J]. Global and Planetary Change,2014,117:52-63. |
117 | Barnes E A, Dunn-Sigouin E, Masato G,et al. Exploring recent trends in Northern Hemisphere blocking[J]. Geophysical Research Letters,2014,41(2):638-644. |
118 | Barnes E A, Screen J A. The impact of Arctic warming on the mid-latitude jet-stream:Can it? Has it? Will it?[J]. Wiley Interdisciplinary Reviews:Climate Change,2015,6:277-286. |
119 | Coumou D, Lehmann J, Beckmann J. The weakening summer circulation in the Northern Hemisphere mid-latitudes[J]. Science,2015,348(6232):324-327. |
120 | Screen J A. Arctic amplification decreases temperature variance in northern mid- to high-latitudes[J]. Nature Climate Change,2014,4(7):577-582. |
121 | Screen J A, Simmonds I. Exploring links between Arctic amplification and mid-latitude weather[J]. Geophysical Research Letters,2013,40(5):959-964. |
122 | Barnes E A. Revisiting the evidence linking Arctic amplification to extreme weather in mid-latitudes[J]. Geophysical Research Letters,2013,40:4734-4739. |
123 | Cohen J, Screen J A, Furtado J C,et al. Recent Arctic amplification and extreme mid-latitude weather[J]. Nature Geoscience,2014,7(9):627-637. |
124 | Ni Jie, Wu Tonghua, Zhao Lin,et al. Carbon cycle in Arctic permafrost regions:progress and prospect[J]. Journal of Glaciology and Geocryology,2019,41(4):1-17. |
倪杰,吴通华,赵林,等. 北极多年冻土区碳循环研究进展与展望[J]. 冰川冻土,2019,41(4):1-17]. | |
125 | Xiao Yang. Arctic scientific cooperation:institutional discrimination and the emerging monopoly[J]. International Forum,2019,21(1):103-113;158-159. |
肖洋. 北极科学合作:制度歧视与垄断生成[J]. 国际论坛,2019,21(1):103-113;158-159. | |
126 | Xiao Cunde, Su Bo, Wang Xiaoming,et al. Cascading risks to the deterioration in cryospheric functions and services[J]. Chinese Science Bulletin,2019,64(19):1975-1984. |
效存德,苏勃,王晓明,等. 冰冻圈功能及其服务衰退的级联风险[J]. 科学通报,2019,64(19):1975-1984. |
[1] | 杜苗苗, 张芬, 勾晓华, 刘兰娅, 夏敬清, 吴秀平. 祁连山中东部青海云杉径向生长对气候变暖的响应差异[J]. 冰川冻土, 2022, 44(1): 14-23. |
[2] | 周雪飞, 徐嘉, 张绪冰. 基于Sentinel-1卫星数据的北极西北航道通航适宜性分析[J]. 冰川冻土, 2022, 44(1): 117-132. |
[3] | 胡春丽,李辑,郭婷婷,王婉昭,王婷,丁抗抗,焦敏,李菲. 1961—2016年东北地区冬季寒潮事件变化特征及其对区域气候变暖的响应[J]. 冰川冻土, 2021, 43(6): 1755-1763. |
[4] | 贺鹏真,谢周清. 氧同位素示踪夏季北冰洋(62.3°~74.7° N)大气硝酸盐形成途径的研究[J]. 冰川冻土, 2021, 43(5): 1344-1353. |
[5] | 温理想,郭蒙,黄书博,于方冰,钟超,周粉粉. 大兴安岭北部多年冻土区植被对活动层厚度变化的响应[J]. 冰川冻土, 2021, 43(5): 1531-1541. |
[6] | 刘欣, 张绪冰, 王耀. 基于Landsat-8影像的北极地区入海冰川流速监测[J]. 冰川冻土, 2021, 43(4): 987-998. |
[7] | 蔡子怡,游庆龙,陈德亮,张若楠,陈金雷,康世昌. 北极快速增暖背景下冰冻圈变化及其影响研究综述[J]. 冰川冻土, 2021, 43(3): 902-916. |
[8] | 倪鼎铭,康世昌,张玉兰,窦挺峰,黄杰,孙世威,郭军明. 北极阿拉斯加春季积雪中汞的时空分布及其来源分析[J]. 冰川冻土, 2021, 43(2): 427-436. |
[9] | 欧健滨,许刘兵,蒲焘. 1987—2016年雀儿山冰川变化及其对气候变化的响应[J]. 冰川冻土, 2021, 43(1): 36-48. |
[10] | 马翔宇,李传金. 三极地区雪冰中黑碳研究进展[J]. 冰川冻土, 2021, 43(1): 92-106. |
[11] | 吴展开, 王星东, 王峰. 基于FY-3 MWRI数据的北极海冰密集度反演研究[J]. 冰川冻土, 2020, 42(4): 1135-1144. |
[12] | 尹鹏, 王常颖, 杨俊钢. 长时间序列北极海冰密集度遥感数据的比较评估[J]. 冰川冻土, 2020, 42(3): 734-744. |
[13] | 刘美娇, 李颖, 孙美平. 1961 - 2018年河西走廊寒潮频次时空变化特征及其环流影响因素研究[J]. 冰川冻土, 2020, 42(3): 801-811. |
[14] | 常晓丽, 帖利民, 金会军, 何瑞霞, 李晓英, 王永平. 大兴安岭东坡新林林区冻土变化特征[J]. 冰川冻土, 2020, 42(3): 823-833. |
[15] | 罗玉, 秦宁生, 庞轶舒, 王春学, 刘佳, 李金建, 刘希胜. 气候变暖对长江源径流变化的影响分析[J]. 冰川冻土, 2020, 42(3): 952-964. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000