1 |
Shi Yafeng. Glaciers and their environment in China: the present, past and future[M]. Beijing: Science Press, 2000: 101-105.
|
|
施雅风. 中国冰川与环境: 现在、过去和未来[M]. 北京: 科学出版社, 2000: 101-105.
|
2 |
Huss M, Hock R. Global-scale hydrological response to future glacier mass loss[J]. Nature Climate Change, 2018, 8(2): 135-140.
|
3 |
Yao Tandong, Thompson L, Yang Wei, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667.
|
4 |
Shi Yafeng. Concise glacier inventory of China[M]. Shanghai: Shanghai Popular Science Press, 2005.
|
|
施雅风. 简明中国冰川目录[M]. 上海: 上海科学普及出版社, 2005.
|
5 |
Immerzeel W W, van Beek L P H, Bierkens M F P. Climate change will affect the Asian water towers[J]. Science, 2010, 328: 1382-1385.
|
6 |
Yao Tandong, Thompson L, Mosbrugger V, et al. Third Pole Environment (TPE)[J]. Environmental Development, 2012, 3: 52-64.
|
7 |
Jacob T, Wahr J, Pfeffer W T, et al. Recent contributions of glaciers and ice caps to sea level rise[J]. Nature, 2012, 482: 514-518.
|
8 |
Neckel N, Kropáček J, Bolch T, et al. Glacier mass changes on the Tibetan Plateau 2003-2009 derived from ICESat laser altimetry measurements[J/OL]. Environmental Research Letters, 2014, 9(1) [2021-02-06]. .
|
9 |
Flanner M G, Zander C S, Randerson J T, et al. Present-day climate forcing and response from black carbon in snow[J/OL]. Journal of Geophysical Research: Atmospheres, 2007, 112(D11) [2021-02-06]. .
|
10 |
Zhang Yulan, Kang Shichang, Cong Zhiyuan, et al. Light-absorbing impurities enhance glacier albedo reduction in the southeastern Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(13): 6915-6933.
|
11 |
Bond T C, Doherty S J, Fahey D W, et al. Bounding the role of black carbon in the climate system: a scientific assessment[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(11): 5380-5552.
|
12 |
Chen Jizu, Qin Xiang, Kang Shichang, et al. Potential effects of black carbon on glacier mass balance during the past 55 years of Laohugou Glacier No.12, western Qilian Mountains[J]. Journal of Earth Science, 2020, 31: 410-418.
|
13 |
Qian Yun, Yasunari T J, Doherty S J, et al. Light-absorbing particles in snow and ice: measurement and modeling of climatic and hydrological impact[J]. Advances in Atmospheric Sciences, 2015, 32(1): 64-91.
|
14 |
Schmale J, Flanner M, Kang Shichang, et al. Modulation of snow reflectance and snowmelt from Central Asian glaciers by anthropogenic black carbon[J/OL]. Scientific Reports, 2017, 7 [2021-02-06]. .
|
15 |
Skiles S M K, Flanner M, Cook J M, et al. Radiative forcing by light-absorbing particles in snow[J]. Nature Climate Change, 2018, 8(11): 964-971.
|
16 |
Xu Baiqing, Cao Junji, Hansen J, et al. Black soot and the survival of Tibetan glaciers[J]. Proceedings of the National Academy of Sciences, 2009, 106(52): 22114-22118.
|
17 |
Sarangi C, Qian Yun, Rittger K, et al. Impact of light-absorbing particles on snow albedo darkening and associated radiative forcing over high-mountain Asia: high-resolution WRF-Chem modeling and new satellite observations[J]. Atmospheric Chemistry and Physics, 2019, 19(10): 7105-7128.
|
18 |
Thind P S, Chandel K K, Sharma S K, et al. Light-absorbing impurities in snow of the Indian Western Himalayas: impact on snow albedo, radiative forcing and enhanced melting[J]. Environmental Science and Pollution Research, 2019, 26: 7566-7578.
|
19 |
Du Wentao, Qin Xiang, Liu Yushuo, et al. Variations of the Laohugou Glacier No.12 in the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2008, 30(3): 373-379.
|
|
杜文涛, 秦翔, 刘宇硕, 等. 1958-2005年祁连山老虎沟12号冰川变化特征研究[J]. 冰川冻土, 2008, 30(3): 373-379.
|
20 |
Zhang Qibing, Kang Shichang, Wang Jing. Elevation change of the Laohugou Glacier No.12 in the western Qilian Mountains from 2000 to 2014[J]. Journal of Glaciology and Geocryology, 2017, 39(4): 733-740.
|
|
张其兵, 康世昌, 王晶. 2000-2014年祁连山西段老虎沟12号冰川高程变化[J]. 冰川冻土, 2017, 39(4): 733-740.
|
21 |
Chen Jizu, Qin Xiang, Wu Jinkui, et al. Simulating the energy and mass balance on the Laohugou Glacier No.12 in the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2014, 36(1): 38-47.
|
|
陈记祖, 秦翔, 吴锦奎, 等. 祁连山老虎沟12号冰川表面能量和物质平衡模拟[J]. 冰川冻土, 2014, 36(1): 38-47.
|
22 |
Liu Shiyin, Ding Yongjian, Li Jing, et al. Glaciers in response to recent climate warming in western China[J]. Quaternary Sciences, 2006, 26(5): 762-771.
|
|
刘时银, 丁永建, 李晶, 等. 中国西部冰川对近期气候变暖的响应[J]. 第四纪研究, 2006, 26(5): 762-771.
|
23 |
Liu Shiyin, Yao Xiaojun, Guo Wanqin, et al. The contemporary glaciers in China based on the Second Chinese Glacier Inventory[J]. Acta Geographica Sinica, 2015, 70(1): 3-16.
|
|
刘时银, 姚晓军, 郭万钦, 等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015, 70(1): 3-16.
|
24 |
Yang Zhenniang. Glacier water resources in China[M]. Lanzhou: Gansu Science and Technology Press, 1991: 135-158.
|
|
杨针娘. 中国冰川水资源[M]. 兰州: 甘肃科学技术出版社, 1991: 135-158.
|
25 |
Pritchard H D. Asia’s shrinking glaciers protect large populations from drought stress[J]. Nature, 2019, 569(7758): 649-654.
|
26 |
Zhang Qiang, Sun Zhaoxuan, Chen Lihua, et al. Reviews on studies of exploitation and utilization of cloud-water resource in the Qilian Mountains region[J]. Arid Land Geography, 2009, 32(3): 381-390.
|
|
张强, 孙昭萱, 陈丽华, 等. 祁连山空中云水资源开发利用研究综述[J]. 干旱区地理, 2009, 32(3): 381-390.
|
27 |
Wang Zhongwu, Qi Weixiu, Bai Lin, et al. Reanalysis of climate change characteristics in Qilian Mountain area[J]. Qinghai Prataculture, 2018, 27(2): 42-48.
|
|
王忠武, 祁维秀, 白林, 等. 祁连山地区气候变化特征再分析[J]. 青海草业, 2018, 27(2): 42-48.
|
28 |
Liu Yushuo, Qin Xiang, Chen Jizu, et al. Variation of Laohugou Glacier No.12 in the western Qilian Mountains, China, from 1957 to 2015[J]. Journal of Mountain Science, 2018, 15(1): 25-32.
|
29 |
Chen Jizu, Kang Shichang, Qin Xiang, et al. The mass-balance characteristics and sensitivities to climate variables of Laohugou Glacier No.12, western Qilian Mountains, China[J]. Sciences in Cold and Arid Regions, 2018, 9(6): 543-553.
|
30 |
Cao Bo, Pan Baotian, Gao Hongshan, et al. Glacier variation in the Lenglongling Range of Eastern Qilian Mountains from 1972 to 2007[J]. Journal of Glaciology and Geocryology, 2010, 32(2): 242-248.
|
|
曹泊, 潘保田, 高红山, 等. 1972-2007年祁连山东段冷龙岭现代冰川变化研究[J]. 冰川冻土, 2010, 32(2): 242-248.
|
31 |
Liu Shiyin, Shen Yongping, Sun Wenxin, et al. Glacier variation since the maximum of the Little Ice Age in the Western Qilian Mountains, Northwest China[J]. Journal of Glaciology and Geocryology, 2002, 24(3): 227-233.
|
|
刘时银, 沈永平, 孙文新, 等. 祁连山西段小冰期以来的冰川变化研究[J]. 冰川冻土, 2002, 24(3): 227-233.
|
32 |
Sun Meiping, Liu Shiyin, Yao Xiaojun, et al. Glacier changes in the Qilian Mountains in the past half-century: based on the revised first and second Chinese glacier inventory[J]. Journal of Geographical Sciences, 2018, 28(2): 206-220.
|
33 |
Pu Jianchen, Yao Tandong, Duan Keqin, et al. Mass balance of the Qiyi Glacier in the Qilian Mountains: a new observation[J]. Journal of Glaciology and Geocryology, 2005, 27(2): 199-204.
|
|
蒲建辰, 姚檀栋, 段克勤, 等. 祁连山七一冰川物质平衡的最新观测结果[J]. 冰川冻土, 2005, 27(2): 199-204.
|
34 |
Zhang Shuai, Shi Chunxiang, Liang Xiao, et al. Assessment of FY-3 snow cover product[J]. Remote Sensing Technology and Application, 2018, 33(1): 35-46.
|
|
张帅, 师春香, 梁晓, 等. 风云三号积雪覆盖产品评估[J]. 遥感技术与应用, 2018, 33(1): 35-46.
|
35 |
Wu Xuejiao, Wang Ninglian, Lu Anxin, et al. Variations in albedo on Dongkemadi Glacier in Tanggula Range on the Tibetan Plateau during 2002-2012 and its linkage with mass balance[J]. Arctic, Antarctic, and Alpine Research, 2015, 47(2): 281-292.
|
36 |
Sun Weijun, Qin Xiang, Wang Yetang, et al. The response of surface mass and energy balance of a continental glacier to climate variability, western Qilian Mountains, China[J]. Climate Dynamics, 2018, 50(9/10): 3557-3570.
|
37 |
Yang Wei, Yao Tandong, Guo Xiaofeng, et al. Mass balance of a maritime glacier on the southeast Tibetan Plateau and its climatic sensitivity[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(17): 9579-9594.
|
38 |
Kapnick S B, Delworth T L, Ashfaq M, et al. Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle[J]. Nature Geoscience, 2014, 7: 834-840.
|
39 |
Kääb A, Treichler D, Nuth C, et al. Brief communication: contending estimates of 2003-2008 glacier mass balance over the Pamir-Karakoram-Himalaya[J]. The Cryosphere, 2015, 9(2): 557-564.
|
40 |
Zhang Yulan, Kang Shichang, Li Chaoliu, et al. Characteristics of black carbon in snow from Laohugou No.12 Glacier on the northern Tibetan Plateau[J]. Science of the Total Environment, 2017, 607: 1237-1249.
|
41 |
Li Xiaofei, Kang Shichang, He Xiaobo, et al. Light-absorbing impurities accelerate glacier melt in the central Tibetan Plateau[J]. Science of the Total Environment, 2017, 587: 482-490.
|
42 |
Kang Shichang, Zhang Qianggong, Qian Yun, et al. Linking atmospheric pollution to cryospheric change in the Third Pole region: current progress and future prospects[J]. National Science Review, 2019, 6(4): 796-809.
|
43 |
Dumont M, Gardelle J, Sirguey P, et al. Linking glacier annual mass balance and glacier albedo retrieved from MODIS data[J]. The Cryosphere, 2012, 6(6): 1527-1539.
|
44 |
Brun F, Dumont M, Wagnon P, et al. Seasonal changes in surface albedo of Himalayan glaciers from MODIS data and links with the annual mass balance[J]. The Cryosphere, 2014, 9(1): 341-355.
|
45 |
Zhang Zhimin, Jiang Liming, Liu Lin, et al. Annual glacier-wide mass balance (2000-2016) of the interior Tibetan Plateau reconstructed from MODIS albedo products[J/OL]. Remote Sensing, 2018, 10(7) [2021-02-06]. .
|