冰川冻土 ›› 2021, Vol. 43 ›› Issue (3): 786-797.doi: 10.7522/j.issn.1000-0240.2021.0020
收稿日期:
2021-05-18
修回日期:
2021-06-09
出版日期:
2021-06-30
发布日期:
2021-05-18
通讯作者:
刘佳
E-mail:songaioppo@163.com;liujia@xtbg.ac.cn
作者简介:
宋艾,博士研究生,主要从事青藏高原及周边地区新生代植物化石研究. E-mail: 基金资助:
Ai SONG1,2(),Jiucheng YANG2,3,Wenna DING2,Jia LIU2(
)
Received:
2021-05-18
Revised:
2021-06-09
Online:
2021-06-30
Published:
2021-05-18
Contact:
Jia LIU
E-mail:songaioppo@163.com;liujia@xtbg.ac.cn
摘要:
近年来,随着DNA测序技术的发展,青藏高原及周边地区的生物地理学研究取得重大成果,从生物演化方面着手探讨了青藏高原隆升历史及其气候效应。综合近年来地质学、古生物学与生物地理学研究进展,我们发现高原及周边地区高寒生物类群的起源和分化时间以及多样性演化过程表明早在渐新世青藏高原部分地区就已经存在高寒生态系统,晚中新世以来青藏高原不同组成部分的地貌与气候格局发生重大改变,高寒生物的祖先类群不断迁入正在生长的高原或在高原上就地演化出适应高寒生境的新物种。晚上新世高寒区物种分化速率快速升高,多样性增加,可能是高原巨大山系和水系以及冰川作用造成地理隔离的结果。同时,生物地理学研究发现青藏高原及周边地区的高寒区与北半球高纬度地区存在密切联系,在第四纪冰期期间并未形成覆盖整个青藏高原的大冰盖,高原面上仍存在很多生物避难所。地质学、古生物学与生物地理学等进行的多学科交叉研究对全方位理解青藏高原隆升历史及其气候效应具有重要意义。
中图分类号:
宋艾,杨久成,丁文娜,刘佳. 青藏高原高寒区生物地理学研究进展[J]. 冰川冻土, 2021, 43(3): 786-797.
Ai SONG,Jiucheng YANG,Wenna DING,Jia LIU. The advances in biogeography research on Tibetan Plateau alpine bioregion[J]. Journal of Glaciology and Geocryology, 2021, 43(3): 786-797.
表1
青藏高寒区生物演化"
种属 | 分布区域 | 适应高海拔类群分化时间或多样性增加时间 | 文献来源 |
---|---|---|---|
Sinopodophyllum hexandrum | 青藏高原东部 | 在约(6.52±1.89) Ma期间出现在青藏高原东部,但是直到3~2 Ma以来才演化出适应高山环境的形态 | [ |
Nannoglottis | 青藏高原 | 在23~32 Ma期间出现在青藏高原,随后多样性增高,其高山灌丛和针叶林生活类型分支时间约为3.4 Ma | [ |
Reaumuria soongarica | 西北干旱区、青藏高原北部 | 高原内部分布类群演化时间2.0~6.3 Ma,高原东北缘与高原西北类群分化时间1.1~3.5 Ma | [ |
Orchidinae | 青藏高原及喜马拉雅山脉 | 青藏高原特有种大多是在过去6 Ma里进化而来 | [ |
Oxyria sinensis | 青藏高原东南部 | 高山类群出现时间7.54~24.36 Ma,种内多样化增加时间1.74~0.86 Ma | [ |
Juniperus microsperma | 西藏波密 | 早中新世21.6~14 Ma期间与其他种群分化 | [ |
Rhododendron | 北半球 | 横断山区概属多样性在晚中新世(约8 Ma)快速增加 | [ |
Roscoea, Cautleya | 喜马拉雅-横断山区 | 在早渐新世(~32 Ma)两属出现,Roscoea在横断山区与喜马拉雅山脉的两个分支大概在渐新世-中新世之交分化 | [ |
Nanorana parkeri | 青藏高原南部 | 高原东部和西部类群分化时间1.4~3.7 Ma | [ |
Paini | 南亚、东南亚、青藏高原 | 在渐新世早期棘蛙族高原-喜马拉雅类群与中国第二阶梯上生活的类群分化,随后在在26.1~12.5 Ma高原生活类群与喜马拉雅山脉生活类群分化,高原内部生活类群在晚中新世到上新世期间分化速率加快 | [ |
Bufo tibetanus | 青藏高原、四川、甘肃、陕西等 | 高原种类形成于上新世期间 | [ |
Phrynocephalus | 亚洲干旱区 | 在7.2~13.0 Ma期间演化出胎生类群,3.2~7.3 Ma期间种间多样性增加 | [ |
Phrynocephalus erythrurus | 羌塘盆地 | 在3.67 Ma左右北部类群与南部类群发生分化,约2.76 Ma北部类群内部进一步分化 | [ |
Gnaptorina | 青藏高原及周边高海拔地区 | 始新世起源于青藏高原东南缘 | [ |
Coelotinae | 北半球温带、亚热带 | 晚始新世高原东南缘隆升阻碍南方隙蛛向北扩散,渐新世高原中部和北部隆起导致北方隙蛛早期多样化进程中的灭绝事件 | [ |
Montifringilla, Onychostruthus, Pyrgilauda | 青藏高原 | 雪雀的共同祖先在约14 Ma就应经生活在青藏高原,并进化出适应高海拔极端环境的性状 | [ |
Parus major | 亚洲、欧洲 | 蒙古分布类群与其他种类分化时间为2.8~0.7 Ma,喜马拉雅山脉东部与中国中东部类群分化时间为1.9~0.4 Ma | [ |
Pseudopodoces humilis | 青藏高原、柴达木盆地周边高山 | 在9.9~7.7 Ma期间地山雀就与与其他山雀分化开来,并出现适应高海拔性状 | [ |
Phylloscopus, Seicercus | 亚洲 | 喜马拉雅山脉分布类群在7 Ma加速进化 | [ |
Perdix | 西藏、甘肃、青海、四川、新疆 | 高原类群出现于3.63 (4.52~2.75) Ma | [ |
Pantholops hodgsonii | 西藏、新疆、青海 | 上新世-更新世就已经出现在青藏高原 | [ |
Procapra picticaudata | 西藏、四川、甘肃、青海、新疆 | 种内分化时间约2.2~4.4 Ma | [ |
Rhinopithecus | 四川、甘肃、陕西、贵州、云南、缅甸、越南 | 北方类群川金丝猴、黔金丝猴与喜马拉雅类群滇金丝猴、缅甸金丝猴分化时间约1.6 Ma | [ |
Ochotona | 北半球 | 分布于青藏高原的高山类群和灌丛草原类群与低海拔泛北极分布类群分化时间大约为2.4 Ma | [ |
Apodemus draco | 四川、云南、甘肃、青海、陕西、湖北、湖南、福建、台湾 | 2.2 Ma (3.8~0.87 Ma)分化形成,后来由于高原的阶段性隆升以及冰川作用种系及遗传结构更加复杂 | [ |
Eothenomys | 东亚 | 高原种类与低海拔种类分裂时间约2.7 Ma | [ |
Schizothoracinae | 青藏高原及周边地区 | 在晚中新世晚期或上新世裂腹鱼亚科鱼类就已经出现在青藏高原及周边水系中,在晚更新世期间种内分化加速,不同海拔之间的类群产生等级分化,种间多样性增加,第四纪以来青藏高原隆升导致的水系改组是推动裂腹鱼亚科鱼类演化的原动力 | [ |
1 | Baker P A, Fritz S C, Dick C W, et al. The emerging field of geogenomics: constraining geological problems with genetic data[J]. Earth-Science Reviews, 2014, 135: 38-47. |
2 | Simpson MG. Plant Systematics[M]. Canada: Elsevier Academic Press, 2006. |
3 | Ronquist F, Sanmartín I. Phylogenetic methods in biogeography[J]. Annual Review of Ecology, Evolution, and Systematics, 2011, 42: 441-464. |
4 | Carina Hoorn, Wesselingh FP, Ter Steege H, et al. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity[J]. Science, 2010, 330(6006): 927-931. |
5 | Thom G, Xue A T, Sawakuchi A O, et al. Quaternary climate changes as speciation drivers in the Amazon floodplains[J]. Science advances, 2020, 6(11): eaax4718. |
6 | Bacon C D, Silvestro D, Jaramillo C, et al. Biological evidence supports an early and complex emergence of the Isthmus of Panama[J]. Proceedings of the National Academy of Sciences, 2015, 112(19): 6110-6115. |
7 | O’Dea A, Lessios H A, Coates A G, et al. Formation of the Isthmus of Panama[J]. Science Advances, 2016, 2(8): e1600883. |
8 | Lu Limin, Mao Lingfeng, Yang Tuo, et al. Evolutionary history of the angiosperm flora of China[J]. Nature, 2018, 554(7691): 234-238. |
9 | Chen Yongsheng, Deng Tao, Zhou Zhuo, et al. Is the East Asian flora ancient or not?[J]. National Science Review, 2018, 5(6): 920-932. |
10 | Favre A, Päckert M, Pauls S U, et al. The role of the uplift of the Qinghai‐Tibetan Plateau for the evolution of Tibetan biotas[J]. Biological Reviews, 2015, 90(1): 236-253. |
11 | Myers N, Mittermeier R A, Mittermeier C G, et al. Biodiversity hotspots for conservation priorities[J]. Nature, 2000, 403(6772): 853-858. |
12 | Wu Zhengyi. Flora of Tibet[M]. Beijing: Science Press, 1987. |
吴征镒. 西藏植物志[M]. 北京: 科学出版社, 1987. | |
13 | Wu Zhengyi. Flora of China[M]. Beijing: Science Press, 1988. |
吴征镒. 中国植被[M]. 北京: 科学出版社, 1988. | |
14 | Yu Haibin, Deane David C, Xinghua Sui, et al. Testing multiple hypotheses for the high endemic plant diversity of the Tibetan Plateau[J]. Global Ecology and Biogeography, 2019, 28(2): 131-144. |
15 | Wu Sugong, Yang Yongping, Fei Yong. On the flora of the alpine region in the Qinghai-Xizang (Tibet) Plateau[J]. Acta Botanica Yunnanica, 1995, 17(3): 233-250. |
武素功, 杨永平, 费勇. 青藏高原高寒地区种子植物区系的研究[J]. 云南植物研究, 1995, 17(3): 233-250. | |
16 | Xiang Zuofu, Liang Xingcai, Huo Sheng, et al. Quantitative analysis of land mammal zoogeographical regions in China and adjacent regions[J]. Zoological Studies, 2004, 43(1): 142-160. |
17 | Wu Yongjie, DuBay S G, Colwell R K, et al. Mobile hotspots and refugia of avian diversity in the mountains of south-west China under past and contemporary global climate change[J]. Journal of Biogeography, 2017, 44(3): 615-626. |
18 | Li Xiumin. Phylogenetic and historical biogeography of partial genera of the tribe Blaptini from the Qinghai-Xizang Plateau[D]. Baoding: Hebei University, 2020. |
李秀敏. 青藏高原琵甲族部分属的系统发育与历史生物地理学[D]. 保定: 河北大学, 2020. | |
19 | Li Xiumin, Bai Xinglong, Kergoat G J., et al. Phylogenetics, historical biogeography and molecular species delimitation of Gnaptorina Reitter (Coleoptera: Tenebrionidae: Blaptini)[J]. Systematic Entomology, 2021, 46(1): 239-251. |
20 | Fortelius M, Eronen J T, Kaya F, et al. Evolution of Neogene mammals in Eurasia: environmental forcing and biotic interactions[J]. Annual Review of Earth and Planetary Sciences, 2014, 42: 579-604. |
21 | Qu Yanhua, Chen Chunhai, Chen Xiumin, et al. The evolution of ancestral and species-specific adaptations in snowfinches at the Qinghai-Tibet Plateau[J]. Proceedings of the National Academy of Sciences, 2021, 118(13): e2012398118. |
22 | Che Jing, Zhou Weiwei, Hu Jiansheng, et al. Spiny frogs (Paini) illuminate the history of the Himalayan region and Southeast Asia[J]. Proceedings of the National Academy of Sciences, 2010, 107(31): 13765-13770. |
23 | Antonelli A, Kissling W D, Flantua S G A, et al. Geological and climatic influences on mountain biodiversity[J]. Nature Geoscience, 2018, 11(10): 718-725. |
24 | Rahbek C, Borregaard M K, Antonelli A, et al. Building mountain biodiversity: geological and evolutionary processes[J]. Science, 2019, 365(6458): 1114-1119. |
25 | Liu Jia. Late Cenozoic climate change and uplift of the Tibetan Plateau: palynological evidence from the Tianshui Basin[D]. Lanzhou: Lanzhou University, 2016. |
刘佳. 晚新生代天水盆地孢粉记录的气候变化与青藏高原隆升[D]. 兰州: 兰州大学, 2016. | |
26 | Ding W, Ree R H, Spicer R A, et al. Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora[J]. Science, 2020, 369(6503): 578-581. |
27 | Merckx V S F T, Hendriks K P, Beentjes K K, et al. Evolution of endemism on a young tropical mountain[J]. Nature, 2015, 524(7565): 347-350. |
28 | Liu Jianquan, Duan Yuanwen, Hao Gang, et al. Evolutionary history and underlying adaptation of alpine plants on the Qinghai-Tibet Plateau[J]. Journal of Systematics and Evolution, 2014, 52(3): 241-249. |
29 | Liu Jianquan, Tian Bing. Origin, evolution, and systematics of Himalaya endemic genera[J]. Newsletter of Himalayan Botany, 2007, 40: 20-27. |
30 | Guo Xianguang, Wang Yuezhao. Partitioned Bayesian analyses, dispersal-vicariance analysis, and the biogeography of Chinese toad-headed lizards (Agamidae: Phrynocephalus): A re-evaluation[J]. Molecular Phylogenetics and Evolution, 2007, 45(2): 643-662. |
31 | Peng Zuogang, Ho S Y W, Zhang Yaoguang, et al. Uplift of the Tibetan Plateau: evidence from divergence times of glyptosternoid catfishes[J]. Molecular Phylogenetics and Evolution, 2006, 39(2): 568-572. |
32 | Qian Hong, Ricklefs R E, Thuiller W. Evolutionary assembly of flowering plants into sky islands[J]. Nature Ecology & Evolution, 2021, 5(5): 640-646. |
33 | Hoorn C, Mosbrugger V, Mulch A, et al. Biodiversity from mountain building[J]. Nature Geoscience, 2013, 6(3): 154. |
34 | Wang Xiaoming, Wang Yang, Li Qiang, et al. Cenozoic vertebrate evolution and paleoenvironment in Tibetan Plateau: Progress and prospects[J]. Gondwana Research, 2015, 27(4): 1335-1354. |
35 | Wallace A R. On the monkeys of the Amazon[J]. Annals and Magazine of Natural History, 1854, 14(84): 451-454. |
36 | Ree R H, Moore B R, Webb C O, et al. A likelihood framework for inferring the evolution of geographic range on phylogenetic trees[J]. Evolution, 2005, 59(11): 2299-2311. |
37 | Yang Dandan, Yao Tandong, Wu Guangjian, et al. Study of air temperature variations during the past 100 years in the Aru ice core, western Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2021, 43(1): 124-134. |
杨丹丹, 姚檀栋, 邬光剑, 等. 青藏高原西部阿汝冰芯记录的近100 a气温变化研究[J]. 冰川冻土, 2021, 43(1): 124-134. | |
38 | Dyhrenfurth G O. To the third pole: the history of the high Himalaya[M]. Nielsen Press, 1955. |
39 | Qiu J. China: the third pole[J]. Nature, 2008, 454(7203): 393-396. |
40 | Zhang Yuxin, Li Yu, Zhu Gengrui. The effects of altitude on temperature, precipitation and climatic zone in the Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2019, 41(3): 505-515. |
张宇欣, 李育, 朱耿睿. 青藏高原海拔要素对温度、降水和气候型分布格局的影响[J]. 冰川冻土, 2019, 41(3): 505-515. | |
41 | Liang Eryuan, Wang Yafeng, Shilong Piao, et al. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences, 2016, 113(16): 4380-4385. |
42 | Yao Tandong, Wu Fuyuan, Ding Lin, et al. Multispherical interactions and their effects on the Tibetan Plateau’s earth system: a review of the recent researches[J]. National Science Review, 2015, 2(4): 468-488. |
43 | Santiago Madriñán, Cortés Andrés J, Richardson James E. Páramo is the world's fastest evolving and coolest biodiversity hotspot[J]. Frontiers in genetics, 2013, 4: 192. |
44 | Pablo Vargas. Molecular evidence for multiple diversification patterns of alpine plants in Mediterranean Europe[J]. Taxon, 2003, 52(3): 463-476. |
45 | Heenan Peter B, McGlone Matt S. Evolution of New Zealand alpine and open-habitat plant species during the late Cenozoic[J]. New Zealand Journal of Ecology, 2013, 37(1): 105-113. |
46 | Peter Linder H. The evolution of African plant diversity[J]. Frontiers in Ecology and Evolution, 2014, 2: 38. |
47 | Liu Jianquan, Chen Zhiduan, Lu Anming. Molecular evidence for the sister relationship of the eastern Asia-North American intercontinental species pair in the Podophyllum group (Berberidaceae)[J]. Botanical Bulletin of Academia Sinica, 2002, 43: 147-154. |
48 | Liu Jianquan, Gao Tiangang, Chen Zhiduan, et al. Molecular phylogeny and biogeography of the Qinghai-Tibet Plateau endemic Nannoglottis (Asteraceae)[J]. Molecular Phylogenetics and Evolution, 2002, 23(3): 307-325. |
49 | Li Zhonghu, Chen Jian, Zhao Guifang, et al. Response of a desert shrub to past geological and climatic change: a phylogeographic study of Reaumuria soongarica (Tamaricaceae) in western China[J]. Journal of Systematics and Evolution, 2012, 50(4): 351-361. |
50 | Lai Yangjun, Han Yu, Schuiteman A, et al. Diversification in Qinghai-Tibet Plateau: Orchidinae (Orchidaceae) clades exhibiting pre-adaptations play critical role[J]. Molecular Phylogenetics and Evolution, 2021, 157: 107062. |
51 | Meng Lihua, Chen Gang, Li Zhonghu, et al. Refugial isolation and range expansions drive the genetic structure of Oxyria sinensis (Polygonaceae) in the Himalaya-Hengduan Mountains[J]. Scientific Reports, 2015, 5: 10396. |
52 | Shang Huiying, Li Zhonghu, Dong Miao, et al. Evolutionary origin and demographic history of an ancient conifer (Juniperus microsperma) in the Qinghai-Tibetan Plateau[J]. Scientific Reports, 2015, 5: 10.1038/srep10216. |
53 | Xing Yaowu, Ree R H. Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot[J]. Proceedings of the National Academy of Sciences, 2017, 114(17): E3444-E3451. |
54 | Zhao Jianli, Xia Yongmei, Cannon C H, et al. Evolutionary diversification of alpine ginger reflects the early uplift of the Himalayan-Tibetan Plateau and rapid extrusion of Indochina[J]. Gondwana Research, 2016, 32(): 232-241. |
55 | Liu Jun, Wang Cuimin, Fu Dongli, et al. Phylogeography of Nanorana parkeri (Anura: Ranidae) and multiple refugia on the Tibetan Plateau revealed by mitochondrial and nuclear DNA[J]. Scientific Reports, 2015, 5: 1-9. |
56 | Macey J R, Schulte J A, Larson A, et al. Phylogenetic relationships of toads in the Bufo bufo species group from the eastern escarpment of the Tibetan Plateau: A case of vicariance and dispersal[J]. Molecular Phylogenetics and Evolution, 1998, 9(1): 80-87. |
57 | Jin Yuanting, Brown R P. Species history and divergence times of viviparous and oviparous Chinese toad-headed sand lizards (Phrynocephalus) on the Qinghai-Tibetan Plateau[J]. Molecular Phylogenetics and Evolution, 2013, 68(2): 259-268. |
58 | Jin Yuanting, Liu Naifa. Phylogeography of Phrynocephalus erythrurus from the Qiangtang Plateau of the Tibetan Plateau[J]. Molecular Phylogenetics and Evolution, 2010, 54(3): 933-940. |
59 | Zhao Zhe, Li Shuqiang. Extinction vs. Rapid radiation: The juxtaposed evolutionary histories of coelotine spiders support the Eocene-Oligocene orogenesis of the Tibetan Plateau[J]. Systematic biology, 2017, 66(6): 988-1006. |
60 | Qu Yanhua, Tian Shilin, Han Naijian, et al. Genetic responses to seasonal variation in altitudinal stress: whole-genome resequencing of great tit in eastern Himalayas[J]. Scientific Reports, 2015, 5: 1-10. |
61 | Qu Yanhua, Zhao Hongwei, Han Naijian, et al. Ground tit genome reveals avian adaptation to living at high altitudes in the Tibetan Plateau[J]. Nature Communications, 2013, 4(1): 2071. |
62 | Price T D. The roles of time and ecology in the continental radiation of the Old World leaf warblers (Phylloscopus and Seicercus)[J]. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 2010, 365(1547): 1749-1762. |
63 | Price T D, Hooper D M., Buchanan C D, et al. Niche filling slows the diversification of Himalayan songbirds[J]. Nature, 2014, 509(7499): 222-225. |
64 | Bao Xinkang, Liu Naifa, Qu Jiangyong, et al. The phylogenetic position and speciation dynamics of the genus Perdix (Phasianidae, Galliformes)[J]. Molecular Phylogenetics and Evolution, 2010, 56(2): 840-847. |
65 | Ruan Xiangdong, He Peijian, Zhang Jianlong, et al. Evolutionary history and current population relationships of the Chiru (Pantholops hodgsonii) inferred from mtDNA variation[J]. Journal of Mammalogy, 2005, 86(5): 881-886. |
66 | Zhang Fangfang, Jiang Zhigang. Mitochondrial phylogeography and genetic diversity of Tibetan gazelle (Procapra picticaudata): implications for conservation[J]. Molecular Phylogenetics and Evolution, 2006, 41(2): 313-321. |
67 | Zhou Xuming, Wang Boshi, Pan Qi, et al. Whole-genome sequencing of the snub-nosed monkey provides insights into folivory and evolutionary history[J]. Nature Genetics, 2014, 46(12): 1303-1310. |
68 | Yu Ning, Zheng Changlin, Zhang Yaping, et al. Molecular systematics of pikas (genus Ochotona) inferred from mitochondrial DNA sequences[J]. Molecular Phylogenetics and Evolution, 2000, 16(1): 85-95. |
69 | Sakka H, Quere J P, Kartavtseva I, et al. Comparative phylogeography of four Apodemus species (Mammalia: Rodentia) in the Asian Far East: evidence of Quaternary climatic changes in their genetic structure[J]. Biological Journal of the Linnean Society, 2010, 100(4): 797-821. |
70 | Fan Zhenxin, Liu Shaoying, Liu Yang, et al. Phylogeography of the South China field mouse (Apodemus draco) on the Southeastern Tibetan Plateau reveals high genetic diversity and glacial refugia[J]. PLoS One, 2012, 7(5): e38184. |
71 | Luo Jing, Yang Dong Ming, Suzuki H, et al. Molecular phylogeny and biogeography of Oriental voles: genus Eothenomys (Muridae, Mammalia)[J]. Molecular Phylogenetics and Evolution, 2004, 33(2): 349-362. |
72 | He Jiekun, Lin Siliang, Li Jiatang, et al. Evolutionary history of zoogeographical regions surrounding the Tibetan Plateau[J]. Communications Biology, 2020, 3(1): 415. |
73 | He Jiekun, Lin Siliang, Ding Chenchen, et al. Geological and climatic histories likely shaped the origins of terrestrial vertebrates endemic to the Tibetan Plateau[J]. Global Ecology and Biogeography, 2021, 30(5): 1116-1128. |
74 | Cao Wenxuan, Chen Yiyu, Wu Yunfei, et al. Origin and evolution of schizothoracine fishes in relation to the upheaval of the Xizang Plateau[M]//Studies on the period, amplitude and type of the uplift of the Qinghai-Tibetan Plateau. Beijing: Science Press, 1981: 118-130. [ |
曹文宣, 陈宜瑜, 武云飞, 等. 裂腹鱼类的起源和演化及其与青藏高原隆起的关系[M]//中国科学院青藏高原综合科学考察队编青藏高原隆起的时代,幅度和形式问题. 北京: 科学出版社, 1981: 118-130.] | |
75 | Chang M M, Miao D S. Review of the Cenozoic fossil fishes from the Tibetan Plateau and their bearings on paleoenvironment[J]. Science Bulletin, 2016, 61(9): 981-995. |
张弥曼, Miao DeSui. 青藏高原的新生代鱼化石及其古环境意义[J]. 科学通报, 2016, 61(9): 981-995. | |
76 | Hou Feixia, Zhang Xiuyue, Zhang Xuefei, et al. High intra-population genetic variability and inter-population differentiation in a plateau specialized fish, Triplophysa orientalis[J]. Environmental Biology of Fishes, 2012, 93(4): 519-530. |
77 | Liu Dongqi, Hou Feixia, Liu Qin, et al. Strong population structure of Schizopygopsis chengi and the origin of S. chengi baoxingensis revealed by mtDNA and microsatellite markers[J]. Genetica, 2015, 143(1): 73-84. |
78 | Qi Delin, Guo Songchang, Chao Yan, et al. The biogeography and phylogeny of schizothoracine fishes (Schizopygopsis) in the Qinghai‐Tibetan Plateau[J]. Zoologica Scripta, 2015, 44(5): 523-533. |
79 | Botsyun S, Sepulchre P, Donnadieu Y, et al. Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene[J]. Science, 2019, 363(6430): eaaq1436. |
80 | Rowley D B, Currie B S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet[J]. Nature, 2006, 439(7077): 677-681. |
81 | Spicer R A, Su Tao, Valdes P J, et al. Why the ‘Uplift of the Tibetan Plateau’ is a myth[J]. National Science Review, 2021, 8(1): nwaa091. |
82 | Su Tao, Farnsworth A, Spicer R A, et al. No high Tibetan Plateau until the Neogene[J]. Science Advances, 2019, 5(3): eaav2189. |
83 | Valdes P J, Ding Lin, Farnsworth A, et al. Comment on “Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene”[J]. Science, 2019, 365(6459): eaax8474. |
84 | Ding Lin, Spicer R A, Yang Jian, et al. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon[J]. Geology, 2017, 45(3): 215-218. |
85 | Ding Lin, Xu Qiang, Yue Yahui, et al. The Andean-type Gangdese Mountains: paleoelevation record from the Paleocene-Eocene Linzhou Basin[J]. Earth and Planetary Science Letters, 2014, 392: 250-264. |
86 | Su Tao, Spicer R A, Wu Feixiang, et al. A Middle Eocene lowland humid subtropical “Shangri-La” ecosystem in central Tibet[J]. Proceedings of the National Academy of Sciences, 2020, 117(52): 32989-32995. |
87 | Fang Xiaomin, Dupont-Nivet G, Wang Chengshan, et al. Revised chronology of central Tibet uplift (Lunpola Basin)[J]. Science Advances, 2020, 6(50): eaba7298. |
88 | Liu Jia, Su Tao, Spicer R A, et al. Biotic interchange through lowlands of Tibetan Plateau suture zones during Paleogene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 524: 33-40. |
89 | Deng Tao, Lu Xiaokang, Wang Shiqi, et al. An Oligocene giant rhino provides insights into Paraceratherium evolution[J]. Communications Biology, 2021, 4(1): 639. |
90 | Wu Feixiang, He Dekui, Fang Gengyu, et al. Into Africa via docked India: a fossil climbing perch from the Oligocene of Tibet helps solve the anabantid biogeographical puzzle[J]. Science Bulletin, 2019, 64(7): 455-463. |
91 | Wu Feixiang, Miao Desui, Chang Mee-mann, et al. Fossil climbing perch and associated plant megafossils indicate a warm and wet central Tibet during the late Oligocene[J]. Scientific Report, 2017, 7(1): 878. |
92 | Jia Linbo, Su Tao, Huang Yongjiang, et al. First fossil record of Cedrelospermum (Ulmaceae) from the Qinghai‐Tibetan Plateau: implications for morphological evolution and biogeography[J]. Journal of Systematics and Evolution, 2019, 57(2): 94-104. |
93 | Tang He, Liu Jia, Wu Feixiang, et al. Extinct genus Lagokarpos reveals a biogeographic connection between Tibet and other regions in the Northern Hemisphere during the Paleogene[J]. Journal of Systematics and Evolution, 2019, 57(6): 670-677. |
94 | Su Tao, Spicer R A, Li Shihu, et al. Uplift, climate and biotic changes at the eocene-oligocene transition in Southeast Tibet[J]. National Science Review, 2019, 6: 495-504. |
95 | Xiong Zhongyu, Ding Lin, Spicer R A, et al. The early Eocene rise of the Gonjo Basin, SE Tibet: from low desert to high forest[J]. Earth and Planetary Science Letters, 2020, 543: 116312. |
96 | Li Jijun, Fang Xiaomin, Song Chunhui, et al. Late Miocene-Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes[J]. Quaternary Research, 2014, 81(3): 400-423. |
97 | Spicer R A, Harris N B W, Widdowson M, et al. Constant elevation of southern Tibet over the past 15 million years[J]. Nature, 2003, 421(6923): 622-624. |
98 | Deng Tao, Wang Xiaoming, Fortelius M, et al. Out of Tibet: Pliocene woolly rhino suggests high-plateau origin of Ice Age megaherbivores[J]. Science, 2011, 333(6047): 1285-1288. |
99 | Wang Xiaoming, Tseng Zhijie Jack, Li Qiang, et al. From ‘third pole’ to north pole: a Himalayan origin for the arctic fox[J]. Proceedings of the Royal Society of London B: Biological Sciences, 2014, 281(1787): 20140893. |
100 | Deng Tao, Ding Lin. Paleoaltimetry reconstructions of the Tibetan Plateau: progress and contradictions[J]. National Science Review, 2015, 2(4): 417-437. |
101 | Renner S S. Available data point to a 4-km-high Tibetan Plateau by 40 Ma, but 100 molecular-clock papers have linked supposed recent uplift to young node ages[J]. Journal of Biogeography, 2016, 43(8): 1479-1487. |
102 | Mudelsee M, Bickert T, Lear C H, et al. Cenozoic climate changes: a review based on time series analysis of marine benthic δ18O records[J]. Reviews of Geophysics, 2014, 52(3): 333-374. |
103 | Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693. |
104 | Nie Junsheng, Ruetenik G, Gallagher K, et al. Rapid incision of the Mekong River in the middle Miocene linked to monsoonal precipitation[J]. Nature Geoscience, 2018, 11(12): 944-948. |
[1] | 曹瑜,游庆龙,蔡子怡. 1961—2019年青藏高原中东部夏季强降水与大尺度环流的关系[J]. 冰川冻土, 2021, 43(5): 1290-1300. |
[2] | 李若晨,申保收,武小波,杨方社,郭忠明. 青藏高原典型山地冰川中痕量元素的空间分布和来源分析[J]. 冰川冻土, 2021, 43(5): 1277-1289. |
[3] | 王一博,吕明侠,赵海鹏,高泽永. 青藏高原多年冻土区活动层土壤入渗特征及机理分析[J]. 冰川冻土, 2021, 43(5): 1301-1311. |
[4] | 段群滔,罗立辉. 人类活动强度空间化方法综述与展望[J]. 冰川冻土, 2021, 43(5): 1582-1593. |
[5] | 刘艺阗,姚济敏,赵林,肖瑶,乔永平,史健宗. 青藏高原唐古拉多年冻土区冻融循环过程中的能量平衡特征[J]. 冰川冻土, 2021, 43(4): 1073-1082. |
[6] | 张明礼,王斌,王得楷,叶伟林,郭宗云,高樯,岳国栋. 降雨对青藏高原多年冻土区地表辐射的影响——以北麓河地区为例[J]. 冰川冻土, 2021, 43(4): 1092-1101. |
[7] | 刘宏超,马俊杰,李韧. 基于KNN机器学习方法对青藏高原唐古拉地区表层土壤水热状况的模拟[J]. 冰川冻土, 2021, 43(4): 1243-1252. |
[8] | 段丽君,申红艳,余迪,马有绚,白文蓉,李万志. 青藏高原雨季降水的水汽条件研究[J]. 冰川冻土, 2021, 43(4): 939-947. |
[9] | 王修喜,张研博,王红,刘慧明,庞博中,王领兵. 西秦岭新生代夷平面发育特征和年代及其意义[J]. 冰川冻土, 2021, 43(3): 841-852. |
[10] | 冯琳,徐建中,翟立翔. 青藏高原典型大陆性冰川表面消融期溶解性有机质演化特征分析[J]. 冰川冻土, 2021, 43(3): 874-884. |
[11] | 马振华,彭廷江,李小苗,冯展涛,郭本泓,李孟,张军,宋春晖. 陇中盆地及周边地区主夷平面演化与高原隆升[J]. 冰川冻土, 2021, 43(3): 827-840. |
[12] | 游庆龙,康世昌,李剑东,陈德亮,翟盘茂,吉振明. 青藏高原气候变化若干前沿科学问题[J]. 冰川冻土, 2021, 43(3): 885-901. |
[13] | 刘擎,李宜垠,孙才奇,聂振宇,杨玮琳,崔之久,刘耕年. 青藏高原(格尔木-亚东)冰缘现象及其气候意义[J]. 冰川冻土, 2021, 43(3): 690-700. |
[14] | 张延广,方小敏,毛子强,申茂华,张涛,昝金波,杨胜利. 青藏高原古里雅冰帽冰碛和冰水沉积物粒度特征及其意义[J]. 冰川冻土, 2021, 43(3): 701-713. |
[15] | 李小苗,吴泽坤,彭廷江,马振华,冯展涛,李孟,郭本泓,宋春晖. 青藏高原东北缘小水子地区晚中新世-上新世生态演化及其意义[J]. 冰川冻土, 2021, 43(3): 776-785. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000