冰川冻土 ›› 2021, Vol. 43 ›› Issue (3): 853-863.doi: 10.7522/j.issn.1000-0240.2021.0026
收稿日期:
2021-05-10
修回日期:
2021-06-03
出版日期:
2021-06-30
发布日期:
2021-07-29
作者简介:
潘保田,教授,主要从事地貌与环境演变研究. E-mail: 基金资助:
Received:
2021-05-10
Revised:
2021-06-03
Online:
2021-06-30
Published:
2021-07-29
摘要:
揭示河流系统响应气候变化和地表抬升的机制是理解流域地貌演化以及水系发育过程的基础,其核心难题是如何充分认识它们在阶地发育中扮演的角色。以往的研究倾向于分开讨论气候变化和地表抬升在河流阶地发育中的作用,认为河流堆积/侧蚀和下切行为分别与冰期和间冰期气候对应,或者将阶地作为地表抬升的直接证据。首先,从上下游河段对比的视角初步解释了黄河中游响应气候变化和地表相对汾渭盆地抬升发育阶地的过程。1.2 Ma以来黄河下蚀鄂尔多斯地块和峨眉台地分别形成了7级阶梯状阶地和6级堆积阶地序列。黄土地层分析结合年代学研究揭示这些阶地面都直接上覆一层古土壤,指示它们形成于气候由冰期向间冰期的过渡阶段,即使在沉降的盆地依然如此。然而,黄河中游并没有在1.2 Ma以来的每一次冰期向间冰期转换都发育阶地,说明气候虽能通过控制河流堆积-侧蚀与下切行为的转换决定阶地的形成时代,但其本身并不是阶地形成的唯一控制因素。在峨眉台地沉降的背景下,黄河无法形成正常的阶梯状阶地序列,取而代之的是堆叠的阶地序列(阶地越年轻拔河高度越大);而当鄂尔多斯地块相对汾渭盆地抬升缓慢时,黄河仅能在极为干旱的冰期向间冰期过渡阶段形成阶地;相比之下,它们相对汾渭盆地抬升速率都足够快速时,驱动黄河近乎对每一次的冰期向间冰期转换都能做出响应而发育阶地。以上黄河中游阶地与气候和地表抬升的对比模式揭示出,快速地表抬升也是阶梯状阶地序列发育不可或缺的因素,能驱使河流在冰期向间冰期过渡阶段显著下切,拉大相邻阶地面垂直距离从而利于后期保存。因此,研究认为黄河中游发育的系列阶地是响应气候变化和地表相对汾渭盆地抬升的结果。
中图分类号:
潘保田,胡振波. 黄河中游响应气候变化和地表相对抬升发育阶地研究[J]. 冰川冻土, 2021, 43(3): 853-863.
Baotian PAN,Zhenbo HU. The study on the terrace development by the middle reaches of Yellow River as a response to the climate change and relative surface uplift[J]. Journal of Glaciology and Geocryology, 2021, 43(3): 853-863.
图3
黄河阶地序列及上覆黄土横断面图注:黄河在吴堡形成的阶地序列横断面图(a)。在该区唐县期夷平面限定了晋陕峡谷的谷肩,之下分布7级黄河阶地,除T2和T1为堆积阶地外其余均为基座阶地。每级阶地面上覆厚层黄土,其底部都为一层古土壤直接覆盖在下伏阶地的沙砾石层上。对唐县期夷平面和黄河阶地上覆红黏土与黄土地层划分和测年结果参见文献[25,35];黄河在南赵发育的阶地序列横断面图(b)。黄河在该区深切峨眉台地,形成6级堆积阶地,其中T6~T4为堆叠的阶地序列(阶地越年轻拔河越高)而T4~T1为正常的阶梯状阶地序列。每级阶地上覆不同厚度的黄土,其黄土-古土壤地层划分和测年结果参见文献[39]。横断面图3(a)与3(b)在黄河中游的位置参见图1和图2"
1 | Bull W B. Stream-terrace genesis: implications for soil development[J]. Geomorphology, 1990, 3(3): 351-367. |
2 | Bridgland D, Westaway R. Climatically controlled river terrace staircases: a worldwide Quaternary phenomenon[J]. Geomorphology, 2008, 98(3/4): 285-315. |
3 | Bridgland D R. River terrace systems in north-west Europe: an archive of environmental change, uplift and early human occupation[J]. Quaternary Science Reviews, 2000, 19(13): 1293-1303. |
4 | Veldkamp A, Tebbens L A. Registration of abrupt climate changes within fluvial systems: insights from numerical modelling experiments[J]. Global and Planetary Change, 2001, 28(1): 129-144. |
5 | Maddy D, Bridgland D R, Green C P. Crustal uplift in southern England: evidence from the river terrace records[J]. Geomorphology, 2000, 33(3/4): 167-181. |
6 | Lave J, Avouac J P. Fluvial incision and tectonic uplift across the Himalayas of central Nepal[J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B11): 26561-26591. |
7 | Cohen K M, Stouthamer E, Berendsen H J A. Fluvial deposits as a record for Late Quaternary neotectonic activity in the Rhine-Meuse delta, The Netherlands[J]. Geologie En Mijnbouw-Netherlands Journal of Geosciences, 2002, 81(3/4): 389-405. |
8 | Stokes M. Plio-Pleistocene drainage development in an inverted sedimentary basin: Vera basin, Betic Cordillera, SE Spain[J]. Geomorphology, 2008, 100(1/2): 193-211. |
9 | Westaway R, Bridgland D R, Sinha R, et al. Fluvial sequences as evidence for landscape and climatic evolution in the Late Cenozoic: a synthesis of data from IGCP 518[J]. Global and Planetary Change, 2009, 68(4): 237-253. |
10 | Bull W B. Geomorphic responses to climatic change[M]. Oxford University Press, 1991. |
11 | Merritts D J, Vincent K R, Wohl E E. Long river profiles, tectonism, and eustasy: A guide to interpreting fluxial terraces[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B7): 14031-14050. |
12 | Schumm S A. The fluvial system[M]. New York, 1977. |
13 | Salcher B C, Faber R, Wagreich M. Climate as main factor controlling the sequence development of two Pleistocene alluvial fans in the Vienna Basin (eastern Austria): a numerical modelling approach[J]. Geomorphology, 2010, 115(3/4): 215-227. |
14 | Leopold L B, Bull W B. Base level, aggradation, and grade: Proceedings of the American Philosophical Society, v. 123[J]. Nature, 1979, 123(3): 168-202. |
15 | Ganti V, Chu Z, Lamb M P, et al. Testing morphodynamic controls on the location and frequency of river avulsions on fans versus deltas: Huanghe (Yellow River), China[J]. Geophysical Research Letters, 2014, 41(22): 7882-7890. |
16 | Vandenberghe J. River terraces as a response to climatic forcing: Formation processes, sedimentary characteristics and sites for human occupation[J]. Quaternary International, 2015, 370: 3-11. |
17 | Büdel J. Klima-Geomorphologie[M]. Schweizerbart Science Publishers, 1981. |
18 | Bridgland D, Maddy D, Bates M. River terrace sequences: templates for Quaternary geochronology and marine-terrestrial correlation[J]. Journal of Quaternary Science, 2004, 19(2): 203-218. |
19 | Pan B T, Burbank D, Wang Y X, et al. A 900 ky record of strath terrace formation during glacial-interglacial transitions in northwest China[J]. Geology, 2003, 31(11): 957-960. |
20 | Pan B T, Wang J P, Gao H S, et al. Paleomagnetic dating of the topmost terrace in Kouma, Henan and its indication to the Yellow River’s running through Sanmen Gorges[J]. Chinese Science Bulletin, 2005, 50(7): 657-664. |
21 | Perrineau A, Woerd J V D, Gaudemer Y, et al. Incision rate of the Yellow River in Northeastern Tibet constrained by 10Be and 26Al cosmogenic isotope dating of fluvial terraces: implications for catchment evolution and plateau building[J]. Geological Society, London, Special Publications, 2011, 353(1): 189-219. |
22 | Pan B T, Su H B, Hu Z, et al. Evaluating the role of climate and tectonics during non-steady incision of the Yellow River: evidence from a 1.24 Ma terrace record near Lanzhou, China[J]. Quaternary Science Reviews, 2009, 28(27/28): 3281-3290. |
23 | Wilson L F, Pazzaglia F J, Anastasio D J. A fluvial record of active fault-propagation folding, Salsomaggiore anticline, northern Apennines, Italy[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B8): 1-23. |
24 | Maddy D. Uplift-driven valley incision and river terrace formation in southern England[J]. Journal of Quaternary Science, 1997, 12(6): 539-545. |
25 | Hu Z B, Pan B T, Guo L Y, et al. Rapid fluvial incision and headward erosion by the Yellow River along the Jinshaan gorge during the past 1.2 Ma as a result of tectonic extension[J]. Quaternary Science Reviews, 2016, 133: 1-14.. |
26 | Craddock W H, Kirby E, Harkins N W, et al. Rapid fluvial incision along the Yellow River during headward basin integration[J]. Nature Geoscience, 2010, 3(3): 209-213. |
27 | Pan B T, Hu Z B, Wang J P, et al. A magnetostratigraphic record of landscape development in the eastern Ordos Plateau, China: transition from Late Miocene and Early Pliocene stacked sedimentation to Late Pliocene and Quaternary uplift and incision by the Yellow River[J]. Geomorphology, 2011, 125(1): 225-238. |
28 | Pan B T, Su H, Hu C S, et al. Discovery of a 1.0 Ma Yellow River terrace and redating of the fourth Yellow River terrace in Lanzhou area[J]. Progress in Natural Science, 2007, 17(2): 197-205. |
29 | Li J J, Xie S Y, Kuang M S. Geomorphic evolution of the Yangtze Gorges and the time of their formation[J]. Geomorphology, 2001, 41(2/3): 125-135. |
30 | Li J J. The environmental effects of the uplift of the Qinghai-Xizang Plateau[J]. Quaternary Science Reviews, 1991, 10(6): 479-483. |
31 | Li Jijun, Kang Jiancheng. Quaternary glaciations, physiographic stage and loess record in China[J]. Quaternary Sciences, 1989, 9(3): 269-278. |
李吉均, 康建成. 中国第四纪冰期、地文期和黄土记录[J]. 第四纪研究, 1989, 9(3): 269-278. | |
32 | Liu Chiyang, Zhao Hongge, Gui Xiaojun, et al. Space-time coordinate of the evolution and reformation and mineralization response in Ordos Basin[J]. Acta Geologica Sinica, 2006, 80(5): 617-638. |
刘池洋, 赵红格, 桂小军, 等. 鄂尔多斯盆地演化-改造的时空坐标及其成藏(矿)响应[J]. 地质学报, 2006, 80(5): 617-638. | |
33 | Tapponnier P, Xu Z Q, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5547): 1671-1677. |
34 | Yue L P, Li J X, Zheng G, et al. Evolution of the Ordos Plateau and environmental effects[J]. Science in China: Series D Earth Sciences2007, 50:19-26. |
35 | Wang J M. The Fenwei rift and its recent periodic activity[J]. Tectonophysics, 1987, 133(3/4): 257-275. |
36 | Li Jijun. In memory of davisian theory of erosion cycle and peneplain:a centurial study in China[J]. Journal of Lanzhou University, 1999, 35(3): 157-163. |
李吉均. 纪念台维斯侵蚀循环、准平原学说诞生一百周年[J]. 兰州大学学报, 1999, 35(3): 157-163. | |
37 | Sun J M. Long-term fluvial archives in the Fen Wei Graben, central China, and their bearing on the tectonic history of the India-Asia collision system during the Quaternary[J]. Quaternary Science Reviews, 2005, 24(10/11): 1279-1286. |
38 | Pan B T, Hu Z B, Wang J P, et al. The approximate age of the planation surface and the incision of the Yellow River[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 356: 54-61. |
39 | Wang Junping. Formation and evolution of the middle reaches of the Yellow River since Late Cenozoic[D]. Lanzhou: Lanzhou University, 2006. |
王均平. 黄河中游晚新生代地貌演化与黄河发育[D]. 兰州: 兰州大学, 2006. | |
40 | Porter S C, An Z, Zheng H. Cyclic Quaternary alluviation and terracing in a nonglaciated drainage basin on the north flank of the Qinling Shan, central China[J]. Quaternary Research, 1992, 38(2): 157-169. |
41 | Hu Z B, Pan B T, Wang J P, et al. Fluvial terrace formation in the eastern Fenwei Basin, China, during the past 1.2 Ma as a combined archive of tectonics and climate change[J]. Journal of Asian Earth Sciences, 2012, 60: 235-245. |
42 | Wegmann K W, Pazzaglia F J. Holocene strath terraces, climate change, and active tectonics: the Clearwater River basin, Olympic Peninsula, Washington State[J]. Geological Society of America Bulletin, 2002, 114(6): 731-744. |
43 | Wu F L, Fang X M, Ma Y Z, et al. Plio-Quaternary stepwise drying of Asia: evidence from a 3-Ma pollen record from the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 2007, 257(1/2): 160-169. |
44 | Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1): 1-17. |
45 | Research Group of Ordos Peripheral Active Faults, State Seismological Administration. The active fault system around Ordos Basin[M]. Beijing: Seismological Press, 1988. |
国家地震局鄂尔多斯周缘活动断裂系课题组. 鄂尔多斯周缘活动断裂系[M]. 北京: 地震出版社, 1988. | |
46 | Chen H, Bao G D, Shi W, et al. Diversion of the paleo-Yellow River channel in the Qingtongxia area of Ningxia, China: evidence from terraces and fluvial landforms[J]. Geological Journal, 2020, 55(11): 7285-7303. |
47 | Li B F, Sun D H, Xu W H, et al. Paleomagnetic chronology and paleoenvironmental records from drill cores from the Hetao Basin and their implications for the formation of the Hobq Desert and the Yellow River[J]. Quaternary Science Reviews, 2017, 156: 69-89. |
48 | Schumm S A. River response to baselevel change: implications for sequence stratigraphy[J]. Journal of Geology, 1993, 101(2): 279-294. |
49 | Westaway R. Long-term river terrace sequences: evidence for global increases in surface uplift rates in the Late Pliocene and early Middle Pleistocene caused by flow in the lower continental crust induced by surface processes[J]. Netherlands Journal of Geosciences: Geologie en Mijnbouw, 2002, 81(3/4): 305-328. |
50 | Clark M K, Schoenbohm L M, Royden L H, et al. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns[J]. Tectonics, 2004, 23(1): 1-20. |
51 | Schoenbohm L M, Whipple K X, Burchfiel B C, et al. Geomorphic constraints on surface uplift, exhumation, and plateau growth in the Red River region, Yunnan Province, China[J]. Geological Society of America Bulletin, 2004, 116(7/8): 895-909. |
52 | Peters G, Van Balen R T. Pleistocene tectonics inferred from fluvial terraces of the northern Upper Rhine Graben, Germany[J]. Tectonophysics, 2007, 430(1): 41-65. |
53 | Bridgland D R, Westaway R, Hu Z B. Basin inversion: a worldwide Late Cenozoic phenomenon[J]. Global and Planetary Change, 2020, 193: 103260. |
54 | Buch M. Zur Frage einer kausalen Verknüpfung fluvialer Prozesse und Klimaschwankungen im Spätpleistozän und Holozän. Versuch einer geomorphodynamischen Deutung von Befunden von Donau und Main in Alpen und Alpenvorland. Beiträge zur Geomorphologie. Discussion des relations entre les processus fluviatiles et les variations climatiques au Pléistocène supérieur et à l’Holocène. Interprétation géomorphodynamique des résultats obtenus dans la région du Danube et du Main[J]. Zeitschrift für Geomorphologie. Supplementband, 1988(70): 131-162. |
55 | Brown A G. Holocene floodplain diachronism and inherited downstream variations in fluvial processes: a study of the River Perry, Shropshire, England[J]. Journal of Quaternary Science, 1990, 5(1): 39-51. |
56 | Hey R D. Dynamic process-response model of river channel development[J]. Earth Surface Processes and Landforms, 1979, 4(1): 59-72. |
57 | Maddy D, Bridgland D, Westaway R. Uplift-driven valley incision and climate-controlled river terrace development in the Thames Valley, UK[J]. Quaternary International, 2001, 79: 23-36. |
58 | Houben P. Spatio-temporally variable response of fluvial systems to Late Pleistocene climate change: a case study from central Germany[J]. Quaternary Science Reviews, 2003, 22(20): 2125-2140. |
59 | Blum M D, Törnqvist T E. Fluvial responses to climate and sea-level change: a review and look forward[J]. Sedimentology, 2000, 4: 2-48. |
60 | Nana Zhe, Pan Baotian, Wang Junping, et al. Grain size abrupt shift around 0.9 Ma in loess and its environmental effect in Fenwei Basin, China[J]. Journal of Desert Research, 2008, 28(1): 50-56. |
褚娜娜, 潘保田, 王均平, 等. 汾渭盆地黄土剖面0.9 Ma前后的粒度突变及其环境意义[J]. 中国沙漠, 2008, 28(1): 50-56. | |
61 | Wegmann K W, Pazzaglia F J. Late Quaternary fluvial terraces of the Romagna and Marche Apennines, Italy: climatic, lithologic, and tectonic controls on terrace genesis in an active orogen[J]. Quaternary Science Reviews, 2009, 28(1/2): 137-165. |
62 | Gao H S, Li Z M, Liu F L, et al. Terrace formation and river valley development along the lower Taohe River in central China[J]. Geomorphology, 2020, 348: 1-13. |
63 | Ma Z H, Feng Z T, Peng T J, et al. Quaternary drainage evolution of the Datong River, Qilian Mountains, northeastern Tibetan Plateau, China[J]. Geomorphology, 2020, 353: 107021. |
64 | Westaway R, Bridgland D, White M. The Quaternary uplift history of central southern England: evidence from the terraces of the Solent River system and nearby raised beaches[J]. Quaternary Science Reviews, 2006, 25(17/18): 2212-2250. |
65 | Chen Y X, Li Y K, Zhang Y, et al. Late Quaternary deposition and incision sequences of the Golmud River and their environmental implications[J]. Quaternary International, 2011, 236(1/2): 48-56. |
66 | Scharer K, Burbank D, Chen J, et al. Kinematic models of fluvial terraces over active detachment folds: constraints on the growth mechanism of the Kashi-Atushi fold system, Chinese Tian Shan[J]. Geological Society of America Bulletin, 2006, 118(7/8): 1006-1021. |
[1] | 王乃昂,安东,孙德浩,刘啸,陆晨遨,孟楠,杨丹,王媛媛,席振鑫. 山东蒙山峨峪口砾石堤的成因类型和泥石流发生历史[J]. 冰川冻土, 2021, 43(4): 1228-1242. |
[2] | 沈曼丽,张军,惠争闯. 兰州西津黄土色度指标记录的第四纪气候演化[J]. 冰川冻土, 2021, 43(3): 809-817. |
[3] | 王刚, 冯自光, 顾佳妮, 赵志中. 昆仑山垭口地区第四纪冰川遗迹及冰期演化[J]. 冰川冻土, 2019, 41(1): 64-74. |
[4] | 王乃昂, 戴霜, 张律吕, 余莺潇, 于昕冉, 田璐, 尹丽颖. 第四纪冰川遗迹的判别标准与方法问题——兼论蒙山巨砾堆积堤之成因[J]. 冰川冻土, 2017, 39(6): 1289-1297. |
[5] | 王乃昂, 赵井东, 余莺潇, 于昕冉, 张文佳. 渐趋完善的第四纪冰川研究范式——记第四届中国第四纪冰川与环境变化研讨会[J]. 冰川冻土, 2017, 39(5): 1029-1038. |
[6] | 陈安东, 顾佳妮, 赵志中, 钱方, 王海雷. 云南大理点苍山末次冰期冰碛物石英砂扫描电镜形态特征分析[J]. 冰川冻土, 2016, 38(2): 453-462. |
[7] | 刘德梅, 杨倩, 陈志国, 曾方明, 魏海成. 藏嵩草高寒湿地中孢粉记录的古植被与古环境状况[J]. 冰川冻土, 2016, 38(2): 539-548. |
[8] | 张文翔, 史正涛, 刘勇, 苏怀, 牛洁. 新疆伊犁盆地黄土古气候记录与Heinrich事件对比分析[J]. 冰川冻土, 2015, 37(4): 973-979. |
[9] | 温华春, 赖忠平, Michael E. Brookfield, I. Peter Martini, 欧先交. 北美五大湖区晚更新世劳伦泰德冰盖演化年代学综述及石英光释光测年的初步尝试[J]. 冰川冻土, 2015, 37(3): 711-722. |
[10] | 刘蓓蓓, 张威, 崔之久, 刘亮. 青藏高原东北缘玛雅雪山晚第四纪冰川发育的气候和构造耦合[J]. 冰川冻土, 2015, 37(3): 701-710. |
[11] | 苏志珠, 杨宗园, 李晋昌. 距今220 ka以来大同盆地沉积物磁化率反映的气候变化[J]. 冰川冻土, 2015, 37(2): 401-407. |
[12] | 戚帮申, 胡道功, 赵希涛, 张绪教, 张耀玲, 杨肖肖, 赵珍, 高雪咪. 青海湖北岸原生砂楔的发现及其古气候意义[J]. 冰川冻土, 2014, 36(6): 1412-1419. |
[13] | 殷秀峰, 赵井东, 伍云飞. 东天山黑沟流域冰川沉积序列及OSL测年研究[J]. 冰川冻土, 2014, 36(1): 63-70. |
[14] | 李卓仑, 王乃昂, 李育, 程弘毅. 河西走廊花海古湖泊早、中全新世湖水盐度变化及其环境意义[J]. 冰川冻土, 2013, 35(6): 1481-1489. |
[15] | 赵井东, 王杰, 殷秀峰. 中国第四纪冰川研究的现状与争议——兼记首届“中国第四纪冰川与环境变化”研讨会[J]. 冰川冻土, 2013, 35(1): 119-125. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000