1 |
Tsur Y, Graham-Tomasi T. The buffer value of groundwater with stochastic surface water supplies[J]. Journal of Environmental Economics & Management, 1990, 21(3): 201-224.
|
2 |
Sophocleous M. Interactions between groundwater and surface water: The state of the science[J]. Hydrogeology Journal, 2002, 10(1): 52-67.
|
3 |
Kalbus E, Reinstorf F, Schirmer M. Measuring methods for groundwater-surface water interactions: a review[J]. Hydrology and Earth System Sciences, 2006, 10(1): 873-887.
|
4 |
Cey E E, Rudolph D L, Parkin G W, et al. Quantifying groundwater discharge to a small perennial stream in southern Ontario, Canada[J]. Journal of Hydrology, 1998, 210(1/2/3/4): 21-37.
|
5 |
Harte P T, Kiah R G. Measured river leakages using conventional stream flow techniques: the case of Souhegan River, New Hampshire, USA[J]. Hydrogeology Journal, 2009, 17(1): 409-424.
|
6 |
Song Xianfang, Liu Xin, Xia Jun, et al. Interactions between surface water and groundwater in Chabagou Catchment using hydrogen and oxygen isotopes[J]. Journal of Basic Science and Engineering, 2009, 17(1): 8-19.
|
|
宋献方, 刘鑫, 夏军, 等. 基于氢氧同位素的岔巴沟流域地表水-地下水转化关系研究[J]. 应用基础与工程科学学报, 2009, 17(1): 8-19.
|
7 |
Yang Qiyue, Wu Jinkui, Ding Yongjian, et al. A study of isotope hydrology in shallow groundwater and stream water in the Xilin River basin[J]. Journal of Glaciology and Geocryology, 2009, 31(5): 850-856.
|
|
杨淇越, 吴锦奎, 丁永建, 等. 锡林河流域地表水和浅层地下水的稳定同位素研究[J]. 冰川冻土, 2009, 31(5): 850-856.
|
8 |
Hou Dianjiong, Qin Xiang, Wu Jinkui, et al. Isotopic, chemical characteristics and transforming relationship between surface water and groundwater in the Xiaochangma River basin[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 698-705.
|
|
侯典炯, 秦翔, 吴锦奎, 等. 小昌马河流域地表水-地下水同位素与水化学特征及转化关系[J]. 冰川冻土, 2012, 34(3): 698-705.
|
9 |
Kanduč T, Grassa F, McIntosh J, et al. A geochemical and stable isotope investigation of groundwater/surface-water interactions in the Velenje basin, Slovenia[J]. Hydrogeology Journal, 2014, 22(4): 971-984.
|
10 |
Cook P G. Estimating groundwater discharge to rivers from river chemistry surveys[J]. Hydrological Processes, 2013, 27: 3694-3707.
|
11 |
Unland N P, Cartwright I, Andersen M S, et al. Investigating the spatio-temporal variability in groundwater and surface water interactions: A multi-technique approach[J]. Hydrology and Earth System Sciences, 2013, 17(9): 3437-3453.
|
12 |
Harley J H, Harley N H, Healy J W, et al. Exposures from the uranium series with emphasis on radon and its daughters[R]. Bethesda, MD: National Council on Radiation Protection and Measurements, 1984: 52-54.
|
13 |
Cook P G, Lamontagne S, Berhane D, et al. Quantifying groundwater discharge to Cockburn River, southeastern Australia, using dissolved gas tracers 222Rn and SF6[J]. Water Resources Research, 2006, 42: 1-12.
|
14 |
Cook P G, Favreau G, Dighton J C, et al. Determining natural groundwater influx to a tropical river using radon, chlorofluorocarbons and ionic environmental tracers[J]. 2003, 277: 74-88.
|
15 |
Stellato L, Petrella E, Terrasi F, et al. Some limitations in using 222Rn to assess river-groundwater interactions: the case of Castel di Sangro alluvial plain (central Italy)[J]. Hydrogeology Journal, 2008, 16: 701-712.
|
16 |
Oyarzún R, Zambra S, Maturana H, et al. Chemical and isotopic assessment of surface water-shallow groundwater interaction in the arid Grande River basin, North-Central Chile[J]. Hydrological Sciences Journal, 2016, 61(12): 2193-2204.
|
17 |
Su Xiaosi, Xu Wei, Yang Fengtian, et al. Using new mass balance methods to estimate gross surface water and groundwater exchange with naturally occurring tracer 222Rn in data poor regions: a case study in northwest China[J]. Hydrological Processes, 2015, 29(6): 979-990.
|
18 |
Zhao Dan, Wang Guangcai, Liao Fu, et al. Groundwater-surface water interactions derived by hydrochemical and isotopic (222Rn, deuterium, oxygen-18) tracers in the Nomhon area, Qaidam basin, NW China[J]. Journal of Hydrology, 2018, 565: 650-661.
|
19 |
Yi Peng, Luo Huan, Chen Li, et al. Evaluation of groundwater discharge into surface water by using Radon-222 in the Source Area of the Yellow River, Qinghai-Tibet Plateau[J]. Journal of Environmental Radioactivity, 2018, 192: 257-266.
|
20 |
Wang Yushan, Cheng Xuxue, Zhang Mengnan, et al. A study of the spatial variation in groundwater discharge to river using 222Rn in the lower reaches of the Malian River[J]. Hydrogeology & Engineering Geology, 2018, 45(5): 34-40.
|
|
王雨山, 程旭学, 张梦南, 等. 基于222Rn的马莲河下游地下水补给河水空间差异特征研究[J]. 水文地质工程地质, 2018, 45(5): 34-40.
|
21 |
Tan Hongbing. The study on water environment geochemistry in Golmud River watershed[D]. Xining: Qinghai Institute of Salt lakes, Chinese Academy of Sciences, 2000.
|
|
谭红兵. 格尔木河流域水环境地球化学研究[D]. 西宁: 中国科学院青海盐湖研究所, 2000.
|
22 |
Kou Wenjie. The conversion between surface water and ground water and the rational exploitation in Geermu basin[D]. Beijing: China University of Geosciences(Beijing), 2006.
|
|
寇文杰. 格尔木河流域地表水与地下水相互转换关系及其合理开发利用研究[D]. 北京: 中国地质大学(北京), 2006.
|
23 |
Li Jian, Wang Hui, Wei Liqiong. Isotopic and hydrochemical characteristics of groundwater in the Golmud River basin[J]. Northwestern Geology, 2007, 40(4): 91-100.
|
|
李健, 王辉, 魏丽琼. 格尔木河流域平原区地下水同位素及水化学特征[J]. 西北地质, 2007, 40(4): 91-100.
|
24 |
Luo Yinfei. The groundwater system and resources in piedmont plain of Golmud River basin in Qinghai Province[D]. Beijing. China University of Geosciences(Beijing), 2013.
|
|
罗银飞. 青海省格尔木河流域山前平原区地下水系统及地下水资源评价[D]. 北京: 中国地质大学(北京), 2013.
|
25 |
Wang Yuhang, Wang Wenke, Duan Lei, et al. Study on dynamic of groundwater in alluvial-pluvial fan zone in front of mountain of Golmud River basin[J]. Journal of Water Resources&Water Engineering, 2014, 25(1): 133-136.
|
|
王宇航, 王文科, 段磊, 等. 格尔木河流域山前冲洪积扇地下水动态研究[J]. 水资源与水工程学报, 2014, 25(1): 133-136.
|
26 |
Wang Shengbin, Xiao Yong, Wang Wanping, et al. Groundwater table dynamics in Golmud piedmont plain of Qinghai Province[J]. Journal of Glaciology and Geocryology, 2016, 38(1): 241-247.
|
|
汪生斌, 肖勇, 王万平, 等. 青海省格尔木山前平原区地下水动态特征分析[J]. 冰川冻土, 2016, 38(1): 241-247.
|
27 |
Wang Yonggui. Investigation and evaluation of groundwater resources and environmental problems in Qaidam basin[M]. Beijing: Geological Publishing House, 2008.
|
|
王永贵. 柴达木盆地地下水资源及其环境问题调查评价[M]. 北京: 地质出版社, 2008.
|
28 |
Xiao Yong. Groundwater circulation patterns and its change trend in sourthern Qaidam basin, northwest China[D]. Beijing: China University of Geosciences(Beijing), 2018.
|
|
肖勇. 柴达木盆地南缘地下水循环演化模式及其变化趋势研究[D]. 北京: 中国地质大学(北京), 2018.
|
29 |
Chen Mengxiong. Hydrogeological status of Qaidam basin[J]. Hydrogeology & Engineering Geology, 1957, 1: 16-21.
|
|
陈梦熊. 柴达木盆地的水文地质条件[J]. 水文地质工程地质, 1957, 1: 16-21.
|
30 |
Li Wenpeng, Zhou Hongchun, Zhou Yangxiao, et al. Groundwater flow system of typical arid area in northwest China[M]. Beijing: Seismological Press, 1995.
|
|
李文鹏, 周宏春, 周仰效, 等. 中国西北典型干旱区地下水流系统[M]. 北京: 地震出版社, 1995.
|
31 |
Mook W G, Vries J J. Water sampling and laboratory treatment[M]//Rozanski K, Froehlich K, Mook W G. Environmental isotopes in the hydrological cycle: principles and applications. Paris-Vienna: UNESCO-IAEA, 2000: 167-178.
|
32 |
Peng T H, Takahashi T, Broecker W S. Surface radon measurements in the North Pacific Ocean station Papa[J]. Journal of Geophysical Research, 1974, 79(12): 1772-1780.
|
33 |
Danckwerts. Significance of liquid-film coefficients in gas absorption[J]. Industrial and Engineering Chemistry, 1951, 43(6): 1460-1467.
|
34 |
O’ Connor Donald J, Dobbins William E. Mechanism of reaeration in natural streams[J]. Transactions of the American Society of Civil Engineers, 1958, 123(1): 641-666.
|
35 |
Lively R S, Morey G B. Hydrogeochemical distribution of uranium and radon in east-central Minnesota[J]. Isotope Studies of Hydrologic Processes, 1982: 91-108.
|
36 |
Asikainen. State of disequilibrium between 238U, 234U, 226Ra and 222Rn in groundwater from bedrock[J]. Geochemica et Cosmochimica Acta, 1981, 45: 201-206.
|
37 |
Krishnaswami S, Graystein W C, Turekian K K. Radium, thorium and radioactive lead isotopes in groundwaters’ application to the in situ determination of adsorption-desorption[J]. Water Resources Research, 1982, 18(6): 1663-1675.
|