冰川冻土 ›› 2021, Vol. 43 ›› Issue (4): 964-975.doi: 10.7522/j.issn.1000-0240.2021.0033
刘世博1,3(), 赵林2(
), 汪凌霄2, 邹德富1, 周华云1,3, 谢昌卫1, 乔永平1, 岳广阳1, 史健宗1
收稿日期:
2020-05-13
修回日期:
2020-11-12
出版日期:
2021-08-31
发布日期:
2021-09-09
通讯作者:
赵林
E-mail:liushibo18@mails.ucas.ac.cn;linzhao@lzb.ac.cn
作者简介:
刘世博,博士研究生,主要从事多年冻土形变研究. E-mail: liushibo18@mails.ucas.ac.cn
基金资助:
Shibo LIU1,3(), Lin ZHAO2(
), Lingxiao WANG2, Defu ZOU1, Huayun ZHOU1,3, Changwei XIE1, Yongping QIAO1, Guangyang YUE1, Jianzong SHI1
Received:
2020-05-13
Revised:
2020-11-12
Online:
2021-08-31
Published:
2021-09-09
Contact:
Lin ZHAO
E-mail:liushibo18@mails.ucas.ac.cn;linzhao@lzb.ac.cn
摘要:
作为大地测量的一种新兴空间技术,合成孔径雷达干涉(synthetic aperture radar interferometry, InSAR)具有全天时、高精度、大范围和速度快的优点,逐渐被应用于多年冻土区地表形变监测中。通过综述多年冻土形变原理及InSAR监测多年冻土形变的应用实例,研究表明:在气候变暖的背景下,多年冻土区地表年际形变以下沉为主,多年冻土上限附近地下冰含量的大小是影响年际形变量的主要因素;活动层内土壤含水量影响着地表季节形变量的大小,不同类型多年冻土区的地表年际形变量和季节形变量存在着较大的差异。研究还表明,不同波长的SAR产品在不同类型多年冻土区的适用性不同,下垫面特征对利用InSAR获取地表形变量有较大影响,L波段的SAR数据在植被覆盖度较好的区域有更好的效果。由于InSAR的失相干问题,加之目前还缺少长时间、多类型、高频率的实测形变结果作为验证和标校数据,获取准确且连续的大范围形变数据较为困难。针对目前寒区研究需求,布设野外长期观测站点,建立适用于不同多年冻土区的地表形变反演算法,构建具有较高精度和较高时空分辨率的地表形变数据集具有重要的实践和科学意义。
中图分类号:
刘世博, 赵林, 汪凌霄, 邹德富, 周华云, 谢昌卫, 乔永平, 岳广阳, 史健宗. InSAR技术在多年冻土区形变监测的应用[J]. 冰川冻土, 2021, 43(4): 964-975.
Shibo LIU, Lin ZHAO, Lingxiao WANG, Defu ZOU, Huayun ZHOU, Changwei XIE, Yongping QIAO, Guangyang YUE, Jianzong SHI. Application of InSAR technology to monitor deformation in permafrost areas[J]. Journal of Glaciology and Geocryology, 2021, 43(4): 964-975.
表1
多年冻土区的年际形变量"
区域 | 研究区 | 年份 | 形变量/mm | SAR数据 |
---|---|---|---|---|
青藏高原 | 北麓河 | 2007—2010 | -5~5 | ALOS |
2003—2010 | -1.78 | Envisat | ||
五道梁 | 2014—2017 | -10.28 | Sentinel-1 | |
青藏公路 | 2007—2010 | -0.52 | Envisat | |
青藏铁路 | 2007—2010 | -0.14 | Envisat | |
高原西北部 | 2003—2011 | -2~3 | Envisat | |
2007—2009 | -2~0 | ALOS | ||
北美洲 | 阿拉斯加北部 | 1992—2000 | -4~-1(每年) | ERS1/2 |
欧洲 | 格陵兰岛东北部 | 1995—1999 | -2.4~-0.3(每年) | ERS1/2 |
2006—2009 | -2.7~-0.8(每年) | Envisat | ||
西伯利亚 | 勒拿河三角洲 | 2016—2017 | 10 | Sentinel-1 |
1 | Zhao Lin, Wu Qingbai, Marchenko S S, et al. Thermal state of permafrost and active layer in central Asia during the international polar year[J]. Permafrost and Periglacial Processes, 2010, 21(2): 198-207. |
2 | Cheng Guodong, Zhao Lin. The problems associated with permafrost in the development of the Qinghai-Xizang Plateau[J]. Quaternary Sciences, 2000, 20(6): 521-531. |
程国栋, 赵林. 青藏高原开发中的冻土问题[J]. 第四纪研究, 2000, 20(6): 521-531. | |
3 | Bockheim J G. Permafrost distribution in the southern circumpolar region and its relation to the environment: a review and recommendations for further research[J]. Permafrost and Periglacial Processes, 1995, 6(1): 27-45. |
4 | IPCC. Climate change 2013: the physical science basis: contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[M]. New York: Cambridge University Press, 2013. |
5 | Cheng G D, Wu T H. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J]. Journal of Geophysical Research: Earth Surface, 2007, 112(F2): 93-104. |
6 | Hinzman L D, Kane D L, Gieck R E, et al. Hydrologic and thermal-properties of the active layer in the Alaskan Arctic[J]. Cold Regions Science and Technology, 1991, 19(2): 95-110. |
7 | Kane D L, Hinzman L D, Zarling J P. Thermal response of the active layer to climatic warming in a permafrost environment[J]. Cold Regions Science and Technology, 1991, 19(2): 111-122. |
8 | Yershov E D. Principles of permafrost[M]. Liu Jingren, trans. Lanzhou: Lanzhou University Press, 2015. [ |
叶尔绍夫Э Д. 冻土学原理[M]. 刘经仁, 译. 兰州: 兰州大学出版社, 2015.] | |
9 | Zhao Lin, Cheng Guodong, Li Shuxun, et al. Thawing and freezing processes of active layer in Wudaoliang region of Tibetan Plateau[J]. Chinese Science Bulletin, 2000, 45(11): 1205-1211. |
赵林, 程国栋, 李述训, 等. 青藏高原五道梁附近多年冻土活动层冻结和融化过程[J]. 科学通报, 2000, 45(11): 1205-1211. | |
10 | Shiklomanov N I, Streletskiy D A, Little J D, et al. Isotropic thaw subsidence in undisturbed permafrost landscapes[J]. Geophysical Research Letters, 2013, 40(24): 6356-6361. |
11 | Wu Qingbai, Tong Changjiang. Permafrost change and stability of Qinghai-Tibet Highway[J]. Journal of Glaciology and Geocryology, 1995, 17(4): 350-355. |
吴青柏, 童长江. 冻土变化与青藏公路的稳定性问题[J]. 冰川冻土, 1995, 17(4): 350-355. | |
12 | Wang Shuangjie, Li Zhulong, Wu Jingmin. The state-of-the-art and new subjects of highway research in permafrost regions of China[J]. Journal of Glaciology and Geocryology, 2003, 25(4): 471-476. |
汪双杰, 李祝龙, 武憼民. 多年冻土地区公路筑路技术研究现状与新课题[J]. 冰川冻土, 2003, 25(4): 471-476. | |
13 | Wu Qingbai, Zhang Tingjun, Liu Yongzhi. Permafrost temperatures and thickness on the Qinghai-Tibet Plateau[J]. Global and Planetary Change, 2010, 72(1/2): 32-38. |
14 | Hinkel K M, Doolittle J A, Bockheim J G, et al. Detection of subsurface permafrost features with ground-penetrating radar, Barrow, Alaska[J]. Permafrost and Periglacial Processes, 2001, 12(2): 179-190. |
15 | Zorigt M, Kwadijk J, Van Beek E, et al. Estimating thawing depths and mean annual ground temperatures in the Khuvsgul region of Mongolia[J]. Environmental Earth Sciences, 2016, 75(10): 897. |
16 | Little J D, Sandall H, Walegur M T, et al. Application of differential global positioning systems to monitor frost heave and thaw settlement in tundra environments[J]. Permafrost and Periglacial Processes, 2003, 14(4): 349-357. |
17 | Zhu Rui. Study on ground deformation of permafrost in Maxian Mountain[D]. Lanzhou: Lanzhou Jiaotong University, 2017. |
朱瑞. 马啣山多年冻土地面变形研究[D]. 兰州: 兰州交通大学, 2017. | |
18 | Ma Wei, Liu Duan, Wu Qingbai. Monitoring and analysis of embankment deformation in permafrost regions of Qinghai-Tibet Railway[J]. Rock and Soil Mechanics, 2008, 29(3): 571-579. |
马巍, 刘端, 吴青柏. 青藏铁路冻土路基变形监测与分析[J]. 岩土力学, 2008, 29(3): 571-579. | |
19 | Shi Gangqiang, Zhao Shiyun, Li Xianming, et al. The frost heaving deformation of high-speed railway subgrades in cold regions: monitoring and analyzing[J]. Journal of Glaciology and Geocryology, 2014, 36(2): 360-368. |
石刚强, 赵世运, 李先明, 等. 严寒地区高速铁路路基冻胀变形监测分析[J]. 冰川冻土, 2014, 36(2): 360-368. | |
20 | Sofia A, Henriette S, Tazio S, et al. Thaw subsidence of a yedoma landscape in northern Siberia, measured in situ and estimated from TerraSAR-X interferometry[J]. Remote Sensing, 2018, 10(4): 494. |
21 | Li Shanshan, Li Zhiwei, Hu Jun, et al. Investigation of the seasonal oscillation of the permafrost over Qinghai-Tibet Plateau with SBAS-InSAR algorithm[J]. Chinese Journal of Geophysics, 2013, 56(5): 1476-1486. |
李珊珊, 李志伟, 胡俊, 等. SBAS-InSAR技术监测青藏高原季节性冻土形变[J]. 地球物理学报, 2013, 56(5): 1476-1486. | |
22 | Graham L C. Synthetic interferometer radar for topographic mapping[J]. Proceedings of the IEEE, 1974, 62(6): 763-768. |
23 | Evans D L, Alpers W, Cazenave A, et al. Seasat: a 25-year legacy of success[J]. Remote Sensing of Environment, 2005, 94(3): 384-404. |
24 | Gabriel A K, Zebker H A, Goldstein R M. Mapping small elevation changes over large areas: differential radar interferometry[J]. Journal of Geophysical Research, 1989, 94(B7): 9183-9191. |
25 | Massonnet D, Rossi M, Carmona C, et al. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature, 1993, 364(6433): 138-142. |
26 | Wang Zhijun, Li Shusun. Detection of winter frost heaving of the active layer of Arctic permafrost using SAR differential interferograms[C]// Proceedings of IEEE International Geoscience and Remote Sensing Symposium 1999: vol 4. New York: IEEE, 1999: 1946-1948. |
27 | Hoffmann J, Zebker H A, Galloway D, et al. Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by synthetic aperture radar interferometry[J]. Water Resources Research, 2001, 37(6): 1551-1566. |
28 | Li Zhen, Li Xinwu, Liu Yongzhi, et al. Detecting the displacement field of thaw settlement by means of SAR interferometry[J]. Journal of Glaciology and Geocryology, 2004, 26(4): 389-396. |
李震, 李新武, 刘永智, 等. 差分干涉SAR冻土形变检测方法研究[J]. 冰川冻土, 2004, 26(4): 389-396. | |
29 | Zebker H A, Villasenor J. Decorrelation in interferometric radar echoes[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5): 950-959. |
30 | Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383. |
31 | Ferretti A, Prati C, Rocca F. Multibaseline InSAR DEM reconstruction: the wavelet approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(2): 705-715. |
32 | Ferretti A, Prati C, Rocca F. Permanent scatters in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 8-19. |
33 | Casu F, Manzo M, Lanari R. A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data[J]. Remote Sensing of Environment, 2006, 102(3/4): 195-210. |
34 | Zhang Yonghong, Wu Hong’an, Sun Guangtong. Deformation model of time series interferometric SAR techniques[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(6): 864-869. |
张永红, 吴宏安, 孙广通. 时间序列InSAR技术中的形变模型研究[J]. 测绘学报, 2012, 41(6): 864-869. | |
35 | Hooper A, Bekaert D, Spaans K, et al. Recent advances in SAR interferometry time series analysis for measuring crustal deformation[J]. Tectonophysics, 2012, 514/515/516/517: 1-13. |
36 | Lanari R, Mora O, Manunta M, et al. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7): 1377-1386. |
37 | Liu Lin, Zhang Tingjun, Wahr J. InSAR measurements of surface deformation over permafrost on the North Slope of Alaska[J/OL]. Journal of Geophysical Research: Earth Surface, 2010, 115(F3) [2021-08-01]. . |
38 | Xie Chou, Li Zhen, Li Xinwu. A study of deformation in permafrost regions of Qinghai-Tibet Plateau based on ALOS/PALSAR D-InSAR interferometry[J]. Remote Sensing for Land and Resources, 2008, 20(3): 15-19. |
谢酬, 李震, 李新武. 基于PALSAR数据的青藏高原冻土形变检测方法研究[J]. 国土资源遥感, 2008, 20(3): 15-19. | |
39 | Liu L, Schaefer K, Zhang T, et al. Estimating 1992-2000 average active layer thickness on the Alaskan North Slope from remotely sensed surface subsidence[J/OL]. Journal of Geophysical Research: Earth Surface, 2012, 117(F1) [2021-08-01]. . |
40 | Liu L, Schaefer K, Gusmeroli A, et al. Seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska[J]. The Cryosphere, 2014, 8(3): 815-826. |
41 | Liu L, Jafarov E E, Schaefer K M, et al. InSAR detects increase in surface subsidence caused by an Arctic tundra fire[J]. Geophysical Research Letters, 2014, 41(11): 3906-3913. |
42 | Cheng Guodong. The formation process of thick subsurface ice[J]. Science in China: Series B, 1982, 12(3): 281-288. |
程国栋. 厚层地下冰的形成过程[J]. 中国科学: B辑, 1982, 12(3): 281-288. | |
43 | Cheng Guodong. Unidirectional accumulation effect of unfrozen water in seasonal freezing and thawing layers[J]. Chinese Science Bulletin, 1981(23): 42-45. |
程国栋. 季节冻结和融化层中未冻水的单向积聚效应[J]. 科学通报, 1981(23): 42-45. | |
44 | Zhao Lin, Hu Guojie, Zou Defu, et al. Permafrost changes and its effects on hydrological processes on Qinghai-Tibet Plateau[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1199-1212. |
赵林, 胡国杰, 邹德富, 等. 青藏高原多年冻土变化对水文过程的影响[J]. 中国科学院院刊, 2019, 34(11): 1199-1212. | |
45 | Xu Xiaozu, Wang Jiacheng, Zhang Lixin. Physics of frozen soil[M]. 2nd ed. Beijing: Science Press, 2010. |
徐敩祖, 王家澄, 张立新. 冻土物理学[M]. 2版. 北京: 科学出版社, 2010. | |
46 | Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al. Geocryology in China[M]. Beijing: Science Press, 2000. |
周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2000. | |
47 | Short N, Brisco B, Couture N, et al. A comparison of TerraSAR-X, RADARSAT-2 and ALOS-PALSAR interferometry for monitoring permafrost environments, case study from Herschel Island, Canada[J]. Remote Sensing of Environment, 2011, 115(12): 3491-3506. |
48 | Zhang Zhengjia, Wang Chao, Tang Yixian, et al. Surface deformation monitoring using time series TerraSAR-X images over permafrost of Qinghai-Tibet Plateau, China[C]// 2016 IEEE International Geoscience and Remote Sensing Symposium. New York: IEEE, 2016: 5963-5966. |
49 | Wang Chunjiao. Land surface deformation research of permafrost degradation area in Northeast China based on D-InSAR[D]. Harbin: Northeast Forestry University, 2015. |
王春娇. 基于D-InSAR的东北多年冻土退化区地表形变研究[D]. 哈尔滨: 东北林业大学, 2015. | |
50 | Strozzi T, Antonova S, Günther F, et al. Sentinel-1 SAR interferometry for surface deformation monitoring in low-land permafrost areas[J]. Remote Sensing, 2018, 10: 1360. |
51 | Daout S, Doin M P, Peltzer G, et al. Large-scale InSAR monitoring of permafrost freeze-thaw cycles on the Tibetan Plateau[J]. Geophysical Research Letters, 2017, 44(2): 901-909. |
52 | Yuan Y. Measuring surface deformation caused by permafrost thawing using radar interferometry, case study: Zackenberg, NE Greenland[D]. Delft, the Netherlands: Delft University of Technology, 2011. |
53 | Singhroy V, Couture R, Alasset P J, et al. InSAR monitoring of landslides on permafrost terrain in Canada[C]// 2007 IEEE International Geoscience and Remote Sensing Symposium. New York: IEEE, 2007: 2451-2454. |
54 | Li Shanshan. The study of using SBAS to monitor the motion of frozen soil along Qinghai-Tibet Railway[D]. Changsha: Central South University, 2012. |
李珊珊. 基于SBAS技术的青藏铁路区冻土形变监测研究[D]. 长沙: 中南大学, 2012. | |
55 | Cong Chong. Study on the surface deformation of permafrost along transportation corridor in plateau based on Sentinel-1A satellite interferometric data[D]. Beijing: Beijing Jiaotong University, 2018. |
丛充. 基于Sentinel-1A卫星干涉数据的高原冻土交通走廊地表形变研究[D]. 北京: 北京交通大学, 2018. | |
56 | Wu Z M, Zhao L, Liu L, et al. Surface-deformation monitoring in the permafrost regions over the Tibetan Plateau, using Sentinel-1 data[J]. Sciences in Cold and Arid Regions, 2018, 10(2): 114-125. |
57 | Chen Fulong, Lin Hui, Zhou Wei, et al. Surface deformation detected by ALOS PALSAR small baseline SAR interferometry over permafrost environment of Beiluhe section, Tibet Plateau, China[J]. Remote Sensing of Environment, 2013, 138: 10-18. |
58 | Li Zhen, Tang Panpan, Zhou Jianmin, et al. Permafrost environment monitoring on the Qinghai-Tibet Plateau using time series ASAR images[J]. International Journal of Digital Earth, 2015, 8(10): 840-860. |
59 | Zhou Huayun, Zhao Lin, Tian Liming, et al. Monitoring and analysis of surface deformation in the permafrost area of Wudaoliang on the Tibetan Plateau based on Sentinel-1 data[J]. Journal of Glaciology and Geocryology, 2019, 41(3): 525-536. |
周华云, 赵林, 田黎明, 等. 基于Sentinel-1数据对青藏高原五道梁多年冻土区地面形变的监测与分析[J]. 冰川冻土, 2019, 41(3): 525-536. | |
60 | Chen Jie, Günther F, Grosse G, et al. Sentinel-1 InSAR measurements of elevation changes over yedoma uplands on Sobo-Sise Island, Lena Delta[J]. Remote Sensing, 2018, 10(7): 1152. |
61 | Jia Yuanyuan, Kim J W, Shum C K, et al. Characterization of active layer thickening rate over the northern Qinghai-Tibetan Plateau permafrost region using ALOS interferometric synthetic aperture radar data, 2007-2009[J]. Remote Sensing, 2017, 9: 84. |
62 | Zou Defu, Zhao Lin, Sheng Yu, et al. A new map of permafrost distribution on the Tibetan Plateau[J]. The Cryosphere, 2017, 11(6): 2527-2542. |
63 | Qin Dahe. Glossary of cryosphere science[M]. Beijing: China Meteorological Press, 2014. |
秦大河. 冰冻圈科学辞典[M]. 北京: 气象出版社, 2014. | |
64 | Pang Qiangqiang, Li Shuxun, Wu Tonghua, et al. Simulated distribution of active layer depths in the frozen ground regions of Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2006, 28(3): 390-395. |
庞强强, 李述训, 吴通华, 等. 青藏高原冻土区活动层厚度分布模拟[J]. 冰川冻土, 2006, 28(3): 390-395. | |
65 | Zhang Zhongqiong, Wu Qingbai. Predicting changes of active layer thickness on the Qinghai-Tibet Plateau as climate warming[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 505-511. |
张中琼, 吴青柏. 气候变化情景下青藏高原多年冻土活动层厚度变化预测[J]. 冰川冻土, 2012, 34(3): 505-511. | |
66 | Wang Chenghai, Jin Shuanglong, Wu Zhongyuan, et al. Evaluation and application of the estimation methods of frozen (thawing) depth over China[J]. Advances in Earth Science, 2009, 24(2): 132-140. |
王澄海, 靳双龙, 吴忠元, 等. 估算冻结(融化)深度方法的比较及在中国地区的修正和应用[J]. 地球科学进展, 2009, 24(2): 132-140. | |
67 | Zhang Zhengjia. Research on Qinghai-Tibet permafrost environment and engineering using high resolution SAR images[D]. Beijing: Chinese Academy of Sciences, 2017. |
张正加. 高分辨率SAR数据青藏高原冻土环境与工程应用研究[D]. 北京: 中国科学院大学, 2017. | |
68 | Zhang Yunjun, Fattahi H, Amelung F. Small baseline InSAR time series analysis: unwrapping error correction and noise reduction[J]. Computers & Geosciences, 2019, 133: 104331. |
69 | Li Pingxiang, Yang Jie. Principle and application of radar measurement[M]. Beijing: Surveying and Mapping Press, 2006. |
李平湘, 杨杰. 雷达测量原理与应用[M]. 北京: 测绘出版社, 2006. | |
70 | Chen C W, Zebker H A. Phase unwrapping for large SAR interferograms: statistical segmentation and generalized network models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(8): 1709-1719. |
71 | Cheng Guodong. The forming process of thick layered ground ice[J]. Science in China: Series B, 1982(7): 100-111. |
72 | Mackay J R. Downward water movement into frozen ground, western arctic coast, Canada[J]. Canadian Journal of Earth Sciences, 1983, 20(1): 120-134. |
73 | Nelson F E, Anisimov O A, Shiklomanov N I. Subsidence risk from thawing permafrost[J]. Nature, 2001, 410(6831): 889-890. |
74 | Jorgenson M T, Racine C H, Walters J C, et al. Permafrost degradation and ecological changes associated with a warming climate in central Alaska[J]. Climatic Change, 2001, 48(4): 551-579. |
75 | Osterkamp T. The recent warming of permafrost in Alaska[J]. Global and Planetary Change, 2005, 49(3/4): 187-202. |
76 | Tarnocai C, Canadell J G, Schuur E A G, et al. Soil organic carbon pools in the northern circumpolar permafrost region[J/OL]. Global Biogeochemical Cycles, 2009, 23(2) [2021-08-01]. . |
[1] | 李艳, 金会军, 温智, 赵子龙, 金晓颖. 多年冻土区斜坡稳定性研究综述[J]. 冰川冻土, 2022, 44(1): 203-216. |
[2] | 王飞, 李国玉, 马巍. 多年冻土区输油管道-管周冻土热力相互作用研究进展[J]. 冰川冻土, 2022, 44(1): 217-228. |
[3] | 彭丽云, 华小宁, 刘德欣, 齐吉琳. 秸秆加筋粉土的冻胀特性研究[J]. 冰川冻土, 2022, 44(1): 241-250. |
[4] | 李智斌, 赵林, 刘广岳, 邹德富, 汪凌霄, 杨斌, 杜二计, 胡国杰, 周华云, 王翀, 幸赞品, 赵建婷, 殷秀峰, 迟鸿飞, 谭昌海, 陈文. 冻结季沱沱河源多年冻土区活动层土壤水分含量分析[J]. 冰川冻土, 2022, 44(1): 56-68. |
[5] | 周华云, 刘广岳, 杨斌, 邹德富, 赵林, 杜二计, 谭昌海, 陈文, 杨朝磊, 文浪, 旺扎多吉, 张浔浔, 肖瑶, 胡国杰, 李智斌, 谢昌卫, 汪凌霄, 刘世博. 长江上游沱沱河源区多年冻土发育特征[J]. 冰川冻土, 2022, 44(1): 69-82. |
[6] | 刘广岳, 邹德富, 杨斌, 杜二计, 周华云, 肖瑶, 赵林, 谭昌海, 胡国杰, 庞强强, 王武, 孙哲, 朱小凡, 殷秀峰, 汪凌霄, 李智斌, 谢昌卫. 青藏高原腹地各拉丹冬南北坡多年冻土考察初步结果[J]. 冰川冻土, 2022, 44(1): 83-95. |
[7] | 罗京, 牛富俊, 林战举, 刘明浩, 尹国安, 高泽永. 青藏高原多年冻土区热融滑塌发育特征及规律[J]. 冰川冻土, 2022, 44(1): 96-105. |
[8] | 李飞,郭佳锴,张世强. VIC-CAS导热率和未冻水算法改进及其对多年冻土水热过程模拟的实验研究[J]. 冰川冻土, 2021, 43(6): 1888-1903. |
[9] | 王一博,吕明侠,赵海鹏,高泽永. 青藏高原多年冻土区活动层土壤入渗特征及机理分析[J]. 冰川冻土, 2021, 43(5): 1301-1311. |
[10] | 焦志平,江利明,牛富俊,郭瑞,周志伟. 藏东冻土区滑坡形变时序InSAR监测分析[J]. 冰川冻土, 2021, 43(5): 1312-1322. |
[11] | 范星文,林战举,罗京,刘明浩,尹国安,高泽永. 高海拔多年冻土区路基工程行为对低温多年冻土长期影响的监测研究[J]. 冰川冻土, 2021, 43(5): 1323-1333. |
[12] | 王蓝翔,董慧科,龚平,王传飞,吴晓东. 多年冻土退化下碳、氮和污染物循环研究进展[J]. 冰川冻土, 2021, 43(5): 1365-1382. |
[13] | 冯晓琳,张艳林,常晓丽. 大兴安岭湿地多年冻土区活动层水热特征分析[J]. 冰川冻土, 2021, 43(5): 1468-1479. |
[14] | 温理想,郭蒙,黄书博,于方冰,钟超,周粉粉. 大兴安岭北部多年冻土区植被对活动层厚度变化的响应[J]. 冰川冻土, 2021, 43(5): 1531-1541. |
[15] | 金豆豆, 张泽, 冯文杰, 王金国, 岳攀, 杨曙光. 电势梯度对冻结黄土电渗效果影响的试验研究[J]. 冰川冻土, 2021, 43(4): 1083-1091. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000