1 |
Levy B S, Patz J A. Climate change, human rights, and social justice[J]. Annals of Global Health, 2015, 81(3): 310-322.
|
2 |
Mishra A K, Singh V P. A review of drought concepts[J]. Journal of Hydrology, 2010, 391(1): 202-216.
|
3 |
Karimi V, Karami E, Keshavarz M. Climate change and agriculture: impacts and adaptive responses in Iran[J]. Journal of Integrative Agriculture, 2018, 17(1): 1-15.
|
4 |
Wang Yingzheng, Li Jia, Wu Lixin, et al. Using remote sensing images to monitor the glacier changes in Qilian Mountains during 1987-2018 and analyzing the impact factors, 1987—2018[J]. Journal of Glaciology and Geocryology, 2020, 42(2): 344-356.
|
|
汪赢政, 李佳, 吴立新, 等. 1987—2018年祁连山冰川变化遥感监测及影响因子分析[J]. 冰川冻土, 2020, 42(2): 344-356.
|
5 |
Wu Kunpeng, Liu Shiyin, Guo Wanqin. Glacier variation and its response to climate change in the Mount Namjagbarwa from 1980 to 2015[J]. Journal of Glaciology and Geocryology, 2020, 42(4): 1115-1125.
|
|
吴坤鹏, 刘时银, 郭万钦. 1980—2015年南迦巴瓦峰地区冰川变化及其对气候变化的响应[J]. 冰川冻土, 2020, 42(4): 1115-1125.
|
6 |
Mu Jianxin, Li Zhongqin, Zhang Hui, et al. The global glacierized area: current situation and recent change, based on the Randolph Glacier Inventory (RGI6. 0) published in 2017[J]. Journal of Glaciology and Geocryology, 2018, 40(2): 238-248.
|
|
牟建新,李忠勤,张慧,梁鹏斌.全球冰川面积现状及近期变化——基于2017年发布的第6版Randolph冰川编目[J]. 冰川冻土, 2018, 40(2): 238-248.
|
7 |
RGI consortium Randolph Glacier Inventory (v.6.0): a dataset of global glacier outlines[DB/OL]. Global Land Ice Measurements from Space, Boulder, Colorado USA, RGI Technical Report, 2017.
|
8 |
Zemp M, Huss M, Thibert E, et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016[J]. Nature, 2019, 568(7752): 382-386.
|
9 |
Zemp M, Huss M, Thibert E, et al. Author correction: global glacier mass changes and their contributions to sea-level rise from 1961 to 2016[J]. Nature, 2020, 577: 1.
|
10 |
Cao B, Pan B, Guan W, et al. Changes in glacier volume on Mt. Gongga, southeastern Tibetan Plateau, based on the analysis of multi-temporal DEMs from 1966 to 2015[J]. Journal of Glaciology, 2019, 65(251): 366-375.
|
11 |
Marzeion B, Jarosch A H, Hofer M. Past and future sea-level change from the surface mass balance of glaciers[J]. The Cryosphere, 2012, 6(6): 1295-1322.
|
12 |
Marzeion. Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise[J]. Nature Geoscience, 2011, 4(2): 91-94.
|
13 |
Bliss A, Hock R, Valentina R. Global response of glacier runoff to twenty-first century climate change[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(4): 717-730.
|
14 |
Marzeion B, Cogley J G, Richter K, et al. Attribution of global glacier mass loss to anthropogenic and natural causes[J]. Science, 2014, 345(6199): 919-921.
|
15 |
Liu Shiyin, Yao Xiaojun, Guo Wanqin, et al. The contemporary glaciers in China based on the Second Chinese Glacier Inventory[J]. Acta Geographica Sinica, 2015, 70(1): 3-16.
|
|
刘时银, 姚晓军, 郭万钦, 等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015, 70(1): 3-16.
|
16 |
Immerzeel W W, Van Beek L P H, Bierkens M F P. Climate change will affect the Asian water towers[J]. Science, 2010, 328(5984): 1382-1385.
|
17 |
Radić V, Hock R. Glaciers in the Earth’s hydrological cycle: assessments of glacier mass and runoff changes on global and regional scales[J]. Surveys in Geophysics, 2014, 35(3): 813-837.
|
18 |
Olefs M, Obleitner F. Numerical simulations on artificial reduction of snow and ice ablation[J]. Water Resources Research, 2007, 43(6).
|
19 |
Olefs M, Fischer A. Comparative study of technical measures to reduce snow and ice ablation in Alpine glacier ski resorts[J]. Cold regions science and technology, 2008, 52(3): 371-384.
|
20 |
Senese A, Azzoni R S, Maragno D, et al. The non-woven geotextiles as strategies for mitigating the impacts of climate change on glaciers[J]. Cold Regions Science and Technology, 2020, 173: 103007.
|
21 |
Olefs M, Lehning M. Textile protection of snow and ice: Measured and simulated effects on the energy and mass balance[J]. Cold Regions Science and Technology, 2010, 62(2/3): 126-141.
|
22 |
Fischer A, Helfricht K, Stocker-Waldhuber M. Local reduction of decadal glacier thickness loss through mass balance management in ski resorts[J]. The Cryosphere, 2016, 10(6): 2941-2952.
|
23 |
Nestler A, Huss M, Ambartzumian R, et al. Hydrological implications of covering wind-blown snow accumulations with geotextiles on Mount Aragats, Armenia[J]. Geosciences, 2014, 4(3): 73-92.
|
24 |
Wang Shijin, Qi CuiShan, Zhou Lanyue, et al. The characteristics of the space-time structure, problem perspective and structural optimization of the tourist destination of Dagu Glacier[J]. Journal of Yunnan Normal University (Philosophy and Social Sciences Edition), 2019, 51(2): 58-67.
|
|
王世金, 齐翠姗, 周蓝月, 等. 达古冰川旅游目的地客源时空结构特征、问题透视及其结构优化[J]. 云南师范大学学报(哲学社会科学版), 2019, 51(2): 58-67.
|
25 |
Wang Shijin, Zhou Lanyue. Integrated impacts of climate change on glacier tourism[J]. Advances in Climate Change Research, 2019, 10(2): 71-79.
|
26 |
Hou Zhiquan, Zhao Junming, He Bo, et al. The research progress on the materials of thermal insulation[J]. Guangdong Chemical Industry, 2018, 45(7): 163-163.
|
|
侯志全, 赵军明, 何勃, 等. 隔热保温材料的研究进展[J]. 广东化工, 2018, 45(7): 163-171.
|
27 |
Li Liang, Wu Yu, Zhao Huatang, al et, Research advances on aging performance of organic insulation materials[J]. New Chemical Materials, 2014(3): 19-20.
|
|
李亮, 吴宇, 赵华堂,等. 有机保温材料老化性能研究进展[J]. 化工新型材料, 2014(3): 19-20.
|
28 |
Gu Zhiwang, Xing Wenjie. The construction technique for interior thermal insulation system for exterior wall with thinned-plaster over STP vacuum insulating panel[J]. Coal Ash, 2013(5): 40-41.
|
|
谷志旺, 邢文杰. STP真空绝热板薄抹灰外墙内保温系统的施工技术[J]. 粉煤灰, 2013(5): 40-41.
|
29 |
Su Gaohui, Yang Zichun, Sun Fengrui. Experimental research of the aluminum foil influence on the insulation performance[J]. Journal of Wuhan University of Technology, 2012, 34(9): 18-20.
|
|
苏高辉, 杨自春, 孙丰瑞. 铝箔对绝热层绝热性能影响的试验研究[J]. 武汉理工大学学报, 2012, 34(9): 18-20.
|
30 |
Brun F, Berthier E, Wagnon P, et al. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016[J]. Nature geoscience, 2017, 10(9): 668-673.
|
31 |
King O, Quincey D J, Carrivick J L, et al. Spatial variability in mass loss of glaciers in the Everest region, central Himalayas, between 2000 and 2015[J]. The Cryosphere, 2017, 11(1): 407-426.
|
32 |
Haeberli W. Glacier mass balance[M]//Singh V P, Singh P, Haritashya U K. Encyclopedia of snow, ice and glaciers. Dordrecht: Springer Netherlands, 2011: 399-408.
|
33 |
Wang P, Li Z, Li H, et al. Characteristics of a partially debris-covered glacier and its response to atmospheric warming in Mt. Tomor, Tien Shan, China[J]. Global and Planetary Change, 2017, 159: 11-24.
|
34 |
Liu Qiao, Liu Shiyin, Zhang Yong, et al. Surface ablation features and recent variation of the lower ablation area of the Hailuogou Glacier, Mt. Gongga[J]. Journal of Glaciology and Geocryology, 2011, 33(2): 227-236.
|
|
刘巧, 刘时银, 张勇, 等. 贡嘎山海螺沟冰川消融区表面消融特征及其近期变化[J]. 冰川冻土, 2011, 33(2): 227-236.
|
35 |
Wang F, Yue X, Wang L, et al. Applying artificial snowfall to reduce the melting of the Muz Taw Glacier, Sawir Mountains[J]. The Cryosphere, 2020, 14(8): 2597-2606.
|
36 |
Huss M, Schwyn U, Bauder A, et al. Quantifying the overall effect of artificial glacier melt reduction in Switzerland, 2005—2019[J]. Cold Regions Science and Technology, 2021, 184: 103237.
|