冰川冻土 ›› 2022, Vol. 44 ›› Issue (1): 203-216.doi: 10.7522/j.issn.1000-0240.2022.0031
李艳1,2(), 金会军1,3(
), 温智1, 赵子龙4, 金晓颖3
收稿日期:
2021-04-28
修回日期:
2021-10-15
出版日期:
2022-02-28
发布日期:
2022-03-28
通讯作者:
金会军
E-mail:liyan1@nieer.ac.cn;hjjin@nefu.edu.cn
作者简介:
李艳,博士研究生,主要从事寒区油气管道工程冻融灾害研究. E-mail: liyan1@nieer.ac.cn
基金资助:
Yan LI1,2(), Huijun JIN1,3(
), Zhi WEN1, Zilong ZHAO4, Xiaoying JIN3
Received:
2021-04-28
Revised:
2021-10-15
Online:
2022-02-28
Published:
2022-03-28
Contact:
Huijun JIN
E-mail:liyan1@nieer.ac.cn;hjjin@nefu.edu.cn
摘要:
全球变暖、极端天气频发,引发的地质灾害对自然生态环境和人类生产生活造成了很大的影响。尤其对气候变化较为敏感的高温(年平均地温>-1 °C)和高含冰量多年冻土区,气候变暖以及人类活动导致的冻融地质灾害日益频繁。冻土退化条件下,土体结构和物理力学性质发生改变,黏聚力和抗剪强度降低,造成多年冻土区斜坡发生滑坡、崩塌、泥流等灾害。斜坡失稳加剧了多年冻土区脆弱生态环境的恶化,同时对建(构)筑物安全运营产生威胁。与非冻土区相比,多年冻土区斜坡稳定性研究主要针对高含冰量斜坡段,斜坡失稳模式主要以热融滑塌和活动层滑脱为主。热融滑塌由斜坡段地下冰暴露融化引起,而活动层滑脱产生的原因是冻土融化导致土体孔隙水压力过大,形成的超孔隙水压力降低了土体强度,造成斜坡失稳。此外,多年冻土区斜坡失稳模式还包括融冻泥流、崩塌以及蠕变滑坡等。通过综述近期多年冻土区斜坡稳定性研究进展,概括了多年冻土区斜坡失稳的模式、特征、影响因素、失稳机理、分析方法及防治措施等,并对未来多年冻土区斜坡失稳的研究重点提出建议。
中图分类号:
李艳, 金会军, 温智, 赵子龙, 金晓颖. 多年冻土区斜坡稳定性研究综述[J]. 冰川冻土, 2022, 44(1): 203-216.
Yan LI, Huijun JIN, Zhi WEN, Zilong ZHAO, Xiaoying JIN. Stability of permafrost slopes: a review[J]. Journal of Glaciology and Geocryology, 2022, 44(1): 203-216.
表1
多年冻土区斜坡稳定性主要研究区域"
作者 | 研究区域 | 年份 | 主要研究内容 |
---|---|---|---|
Swanson等[ | 北美阿拉斯加北极国家公园 | 2021 | 通过比较该区域内三个时间段的热融滑塌、活动层滑脱及冻结岩屑蠕变滑坡(FDLs)发展规模的变化,分析冻土退化对斜坡稳定性的影响 |
Gong等[ | 北美阿拉斯加布鲁克斯山 | 2019 | 通过雷达和遥感数据综合分析评价冻结岩屑蠕变滑坡的发展运动过程 |
Darrow等[ | 北美阿拉斯加布鲁克斯山 | 2017 | 提出预测FDLs运动的函数 |
Ravens等[ | 北美阿拉斯加Drew Point地区 | 2014 | 提出预测存在冰楔海岸线在冻土退化和海水侵蚀所用下的发生崩塌的计算模型 |
Daanen等[ | 北美阿拉斯加布鲁克斯山 | 2012 | 分析、测量、评价FDLs的运动过程 |
Blais-Stevens等[ | 加拿大哥伦比亚地区 | 2018 | 分析该地区的滑坡沉积物组成、通过InSAR监测和Flow-R绘制区域滑坡敏感性区划图 |
Behnia等[ | 加拿大育空地区 | 2017 | 运用随机法对阿拉斯加工程走廊内活动层失稳滑坡进行敏感性分析 |
Lacelle等[ | 加拿大西北部理查森山地区 | 2015 | 调查该地区热融滑塌的分布和发展情况 |
Beamish等[ | 加拿大努纳武特地区 | 2014 | 分析活动层滑脱对区域碳含量的短期影响 |
Harris等[ | 加拿大努纳武特地区 | 2000 | 分析区域内活动层滑脱后斜坡的孔隙水压力和位移变化 |
Geertsema等[ | 加拿大西部哥伦比亚地区 | 2009 | 分析滑坡对线性工程安全的影响 |
Lantuit等[ | 加拿大育空波弗特海岸沿线 | 2008 | 研究波弗特海岸沿线热融滑塌和海岸线侵蚀现象 |
Lewkowicz等[ | 加拿大麦肯齐河谷 | 2005 | 分析总结该地区活动层滑脱灾害的特征和机理 |
Savi等[ | 欧洲阿尔卑斯山 | 2021 | 分析气候变化对高海拔斜坡稳定性的影响 |
Blikra等[ | 欧洲挪威地区 | 2014 | 研究挪威北部高山岩石在冻融循环下的变形及崩塌失稳破坏 |
Fischer等[ | 欧洲阿尔卑斯山 | 2013 | 分析冰川退化、气候变暖对岩石滑坡的影响 |
Kharuk等[ | 俄罗斯西伯利亚中部 | 2016 | 分析气候变化对冻土滑坡发生概率和空间分布的影响 |
Khak等[ | 俄罗斯西伯利亚地区 | 2012 | 分析人为因素对冻土退化和冻土滑坡的影响 |
Leibman等[ | 俄罗斯亚马尔半岛 | 1995 | 对该地区的滑坡进行调查并对其特征进行描述 |
Luo等[ | 青藏高原北麓河地区 | 2019 | 通过卫星图像和实地调查该地区发生热融滑塌数量和规模发展 |
Niu等[ | 青藏高原五道梁地区 | 2014 | 研究该地区发生的一起热融滑塌,提出滑坡稳定性评价方法和防治措施 |
Shan等[ | 大兴安岭地区 | 2016 | 分析气候变化对东北高纬度地区多年冻土斜坡影响 |
Hu[ | 小兴安岭地区 | 2016 | 结合HDR和GPR技术对该地区的滑坡进行调查分析 |
表2
极限平衡法计算多年冻土斜坡稳定性"
方法 | 分析原理 | 计算公式 | 优缺点 |
---|---|---|---|
1 | 基于有效应力理论,认为冻结层阻碍了融水排出,形成的超孔隙水压力使得抗剪强度减小,斜坡发生失稳 | 计算采用有效摩擦力和黏聚力,较符合实际情况,但对于多年冻土区低角度滑坡不适用 | |
2 | 基于总应力理论,认为活动层融化时的融化速度大于土体排水速度,土体不排水抗剪强度降低,导致活动层发生平移滑动 | 计算采用有效摩擦力和黏聚力,同样对于多年冻土区低角度滑坡不适用 | |
3 | 基于有效应力和固结理论,认为融化土体也存在固结,引入融化固结系数R,计算斜坡稳定系数 | 认为斜坡失稳是由超孔隙水压力引起的,不适用于热融滑塌斜坡失稳,对于冻融界面为粗颗粒土斜坡失稳不适用 | |
4 | 认为计算斜坡稳定性系数时需考虑滑坡体颗粒组成和比重,采用岩土颗粒比重及超孔隙水压力表征冻融作用下的滑坡运动 | 需计算泥流重块体与泥流的比重和泥流比重,实际不易测算 | |
5 | 考虑地下水沿坡面渗流,采用静力平衡方法计算稳定系数 | 考虑了地下冰融化产生的渗流,适用于热融滑塌计算,但冰-土剪切强度参数难测算,计算误差较大 |
1 | Zhou Youwu, Guo Dongxin. Principal characteristics of permafrost in China[J]. Journal of Glaciology and Geocryology, 1982, 4(1): 1-19. |
周幼吾, 郭东信. 我国多年冻土的主要特征[J]. 冰川冻土, 1982, 4(1): 1-19. | |
2 | Ma Wei, Niu Fujun, Mu Yanhu. Basic research on the major permafrost projects in the Qinghai-Tibet plateau[J]. Advances in Earth Science, 2012, 27(11): 1185-1191. |
马巍, 牛富俊, 穆彦虎. 青藏高原重大冻土工程的基础研究[J]. 地球科学进展, 2012, 27(11): 1185-1191. | |
3 | Xu Xuezu, Wang Jiacheng, Zhang Lixin. Physics of frozen soil[M]. Beijing: Science Press, 2001. |
徐敩祖, 王家澄, 张立新. 冻土物理学[M], 北京: 科学出版社, 2001. | |
4 | Oliva M, Pereira P, Antoniades D. The environmental consequences of permafrost degradation in a changing climate[J]. The Science of the Total Environment, 2018, 616/617: 435-437. |
5 | Patton A I, Rathburn S L, Capps D M. Landslide response to climate change in permafrost regions[J]. Geomorphology, 2019, 340: 116-128. |
6 | Leibman M, Khomutov A, Kizyakov A. Cryogenic landslides in the Arctic Plains of Russia: Classification, mechanisms, and landforms [C]//Landslide Science for a Safer Geoenvironment, 2014: 493-497. |
7 | Nelson F E, Anisimov O A, Shiklomanov N I. Subsidence risk from thawing permafrost[J]. Nature, 2001, 410(6831): 889-890. |
8 | Cassidy A E, Christen A, Henry G H R. Impacts of active retrogressive thaw slumps on vegetation, soil, and net ecosystem exchange of carbon dioxide in the Canadian High Arctic[J]. Arctic Science, 2017, 3(2): 179-202. |
9 | Cheng Guodong, He Ping. Linearity engineering in permafrost areas[J]. Journal of Glaciolgy and Geocryology, 2001, 23(3): 213-217. |
程国栋, 何平. 多年冻土地区线性工程建设[J]. 冰川冻土, 2001, 23(3): 213-217. | |
10 | Cheng Guodong, Yang Chengsong. Mechanics related with frozen ground in construction of Qinghai-Tibet Railway[J]. Mechanics in Engineering, 2006, 28(3): 1-8. |
程国栋, 杨成松. 青藏铁路建设中的冻土力学问题[J]. 力学与实践, 2006, 28(3): 1-8. | |
11 | Yao Tandong, Qin Dahe, Shen Yongping, et al. Cryospheric changes and their impacts on regional water cycle and ecological conditions in the Qinghai Tibetan Plateau[J]. Chinese Journal of Nature, 2013, 35(3): 179-186. |
姚檀栋, 秦大河, 沈永平, 等. 青藏高原冰冻圈变化及其对区域水循环和生态条件的影响[J]. 自然杂志, 2013, 35(3): 179-186. | |
12 | Sun Zhizhong, Li Guoyu, Yu Wenbing, et al. Review of highway subgrade engineering research in permafrost regions of northeast China[J]. Subgrade Engineering, 2018(3): 6-10. |
孙志忠, 李国玉, 喻文兵, 等. 东北多年冻土区公路路基工程研究进展[J]. 路基工程, 2018(3): 6-10. | |
13 | Yemiriyanova Е П. The basic law of landslide[M]. Chongqing: Chongqing Publishing Group, 1986: 54-55. |
叶米里扬诺娃. 滑坡作用的基本规律[M]. 重庆: 重庆出版社, 1986. | |
14 | Jin Dewu, Niu Fujun, Li Ning. Advances in slope stability study on permafrost area of Qinghai-Tibet Platean[J]. Hydrogeology & Engineering Geology, 2006, 33(4): 98-102. |
靳德武, 牛富俊, 李宁. 青藏高原多年冻土区斜坡稳定性研究进展[J]. 水文地质工程地质, 2006, 33(4): 98-102. | |
15 | Niu Fujun, Cheng Guodong, Lai Yuanming, et al. Instability study on thaw slumping in permafrost regions of Qinghai-Tibet Plateau[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(3): 402-406. |
牛富俊, 程国栋, 赖远明, 等. 青藏高原多年冻土区热融滑塌型斜坡失稳研究[J]. 岩土工程学报, 2004, 26(3): 402-406. | |
16 | Luo Jing. Thaw-induced slope failures and their susceptibility assessment in Qinghai-Tibet Engineering Corridor[D]. Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2015. |
罗京. 青藏工程走廊冻土斜坡失稳及易发性评价研究[D]. 兰州: 中国科学院寒区旱区环境与工程研究所, 2015. | |
17 | McRoberts E C, Morgenstern N R. The stability of thawing slopes[J]. Canadian Geotechnical Journal, 1974, 11(4): 447-469. |
18 | Niu Fujun, Zhang Luxin, Yu Qihao, et al. Study on slope types and stability of typical slopes in permafrost regions of the Tibetan Plateau[J]. Journal of Glaciolgy and Geocryology, 2002, 24(5): 608-613. |
牛富俊, 张鲁新, 俞祁浩, 等. 青藏高原多年冻土区斜坡类型及典型斜坡稳定性研究[J]. 冰川冻土, 2002, 24(5): 608-613. | |
19 | Cruden D, Lan Hengxing. Using the working classification of landslides to assess the danger from a natural slope[C]//Engineering Geology for Society and Territory-Volume 2, 2015: 3-12. |
20 | Swanson D K. Permafrost thaw-related slope failures in Alaska's Arctic National Parks, 1980–2019[J]. Permafrost and Periglacial Processes, 2021, 32(3): 392-406. |
21 | Gong Wenyu, Darrow M M, Meyer F J, et al. Reconstructing movement history of frozen debris lobes in northern Alaska using satellite radar interferometry[J]. Remote Sensing of Environment, 2019, 221: 722-740. |
22 | Darrow M M, Daanen R P, Gong Wenyu. Predicting movement using internal deformation dynamics of a landslide in permafrost[J]. Cold Regions Science and Technology, 2017, 143: 93-104. |
23 | Ravens T M, Jones B M, Zhang Jinlin, et al. Process-based coastal erosion modeling for drew point, north slope, Alaska[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2012, 138(2): 122-130. |
24 | Daanen R P, Grosse G, Darrow M M, et al. Rapid movement of frozen debris-lobes: Implications for permafrost degradation and slope instability in the south-central Brooks Range, Alaska[J]. Natural Hazards and Earth System Sciences, 2012, 12(5): 1521-1537. |
25 | Blais-Stevens A, Maynard D, Singhroy V, et al. Landslides in the Kitimat-Morice River corridor, northwest British Columbia, Canada[C]//Geo Edmonton. Canada, 2018: 1-9. |
26 | Behnia P, Blais-Stevens A. Landslide susceptibility modelling using the quantitative random forest method along the northern portion of the Yukon Alaska Highway Corridor, Canada[J]. Natural Hazards, 2018, 90(3): 1407-1426. |
27 | Lacelle D, Brooker A, Fraser R H, et al. Distribution and growth of thaw slumps in the Richardson mountains-peel plateau region, northwestern Canada[J]. Geomorphology, 2015, 235: 40-51. |
28 | Beamish A, Neil A, Wagner I, et al. Short-term impacts of active layer detachments on carbon exchange in a High Arctic ecosystem, Cape Bounty, Nunavut, Canada[J]. Polar Biology, 2014, 37(10): 1459-1468. |
29 | Harris C, Lewkowicz A G. An analysis of the stability of thawing slopes, Ellesmere Island, Nunavut, Canada[J]. Canadian Geotechnical Journal, 2000, 37(2): 449-462. |
30 | Geertsema M, Schwab J W, Blais-Stevens A, et al. Landslides impacting linear infrastructure in west central British Columbia[J]. Natural Hazards, 2009, 48(1): 59-72. |
31 | Lantuit H, Pollard W H. Fifty years of coastal erosion and retrogressive thaw slump activity on Herschel Island, southern Beaufort Sea, Yukon Territory, Canada[J]. Geomorphology, 2008, 95(1/2): 84-102. |
32 | Lewkowicz A G, Harris C. Morphology and geotechnique of active-layer detachment failures in discontinuous and continuous permafrost, northern Canada[J]. Geomorphology, 2005, 69(1/2/3/4): 275-297. |
33 | Savi S, Comiti F, Strecker M R. Pronounced increase in slope instability linked to global warming: a case study from the eastern European Alps[J]. Earth Surface Processes and Landforms, 2021, 46(7): 1328-1347. |
34 | Blikra L H, Christiansen H H. A field-based model of permafrost-controlled rockslide deformation in northern Norway[J]. Geomorphology, 2014, 208: 34-49. |
35 | Fischer L, Huggel C, Kääb A, et al. Slope failures and erosion rates on a glacierized high-mountain face under climatic changes[J]. Earth Surface Processes and Landforms, 2013, 38(8): 836-846. |
36 | Kharuk V I, Shushpanov A S, Im S T, et al. Climate-induced landslides within the larch dominant permafrost zone of central Siberia[J]. Environmental Research Letters: ERL [Web Site], 2016, 11(4): 045004. |
37 | Khak V A, Kozyreva E A. Changes of geological environment due to the anthropogenic impacts: a case study of south of East Siberia, Russia[J]. Zeitschrift Für Geomorphologie, 2012, 56(2): 183-199. |
38 | Leibman M O. Cryogenic landslides on the Yamal peninsula, Russia: preliminary observations[J]. Permafrost and Periglacial Processes, 1995, 6: 259-264. |
39 | Luo Jing, Niu Fujun, Lin Zhanju, et al. Recent acceleration of thaw slumping in permafrost terrain of Qinghai-Tibet Plateau: an example from the Beiluhe Region[J]. Geomorphology, 2019, 341: 79-85. |
40 | Niu Fujun, Luo Jing, Lin Zhanju, et al. Thaw-induced slope failures and susceptibility mapping in permafrost regions of the Qinghai-Tibet Engineering Corridor, China[J]. Natural Hazards, 2014, 74(3): 1667-1682. |
41 | Shan Wei, Guo Ying, Hu Zhaoguang, et al. Landslides caused by climate change and groundwater movement in permafrost mountain[J]. River Basin Management, 2016. |
42 | Hu Zhaoguang, Shan Wei. Landslide investigations in the northwest section of the lesser Khingan range in China using combined HDR and GPR methods[J]. Bulletin of Engineering Geology and the Environment, 2016, 75(2): 591-603. |
43 | Ward Jones M K, Pollard W H, Jones B M. Rapid initialization of retrogressive thaw slumps in the Canadian high Arctic and their response to climate and terrain factors[J]. Environmental Research Letters, 2019, 14(5): 055006. |
44 | Luo Jing, Niu Fujun, Lin Zhanju, et al. Development of thawing hazards and thermal influence on permafrost along Qinghai-Tibet engineering corridor[J]. Journal of Engineering Geology, 2014, 22(2): 326-333. |
罗京, 牛富俊, 林战举, 等. 青藏工程走廊典型热融灾害现象及其热影响研究[J]. 工程地质学报, 2014, 22(2): 326-333. | |
45 | Wang Shaoling. Thaw slumping in Fenghuo Mountain area along Qinghai-Xizang Highway[J]. Journal of Glaciology and Geocryology, 1990, 12(1): 63-70. |
王绍令. 青藏公路风火山地区的热融滑塌[J]. 冰川冻土, 1990, 12(1): 63-70. | |
46 | Jin Dewu, Sun Jianfeng, Fu Shaolan. Discussion on landslides hazard mechanism of two kinds of low angle slope in permafrost region of Qinghai-Tibet Plateau[J]. Rock and Soil Mechanics, 2005, 26(5): 774-778. |
靳德武, 孙剑锋, 付少兰. 青藏高原多年冻土区两类低角度滑坡灾害形成机理探讨[J]. 岩土力学, 2005, 26(5): 774-778. | |
47 | Gao Qiang, Wen Zhi, Wang Dayan, et al. Study on the instability process of slopes in permafrost regions by direct shear test of freezing-thawing interface[J]. Rock and Soil Mechanics, 2018, 39(8): 2814-2822. |
高樯, 温智, 王大雁, 等. 基于冻融交界面直剪试验的冻土斜坡失稳过程研究[J]. 岩土力学, 2018, 39(8): 2814-2822. | |
48 | Niu Fujun, Luo Jing, Lin Zhanju, et al. Thaw-induced slope failures and stability analyses in permafrost regions of the Qinghai-Tibet Plateau, China[J]. Landslides, 2016, 13(1): 55-65. |
49 | Lewkowicz A G, Way R G. Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment[J]. Nature Communications, 2019, 10: 1329. |
50 | Lamoureux S F, Lafrenière M J. Fluvial impact of extensive active layer detachments, cape bounty, Melville Island, Canada[J]. Arctic, Antarctic, and Alpine Research, 2009, 41(1): 59-68. |
51 | Lewkowicz A G. Dynamics of active-layer detachment failures, Fosheim Peninsula, Ellesmere Island, Nunavut, Canada[J]. Permafrost and Periglacial Processes, 2007, 18(1): 89-103. |
52 | Gooseff M N, Balser A, Bowden W B, et al. Effects of hillslope thermokarst in northern Alaska[J]. Eos, Transactions American Geophysical Union, 2009, 90(4): 29-30. |
53 | Li Xiaoying, Jin Hhuijun, Wang Hongwei, et al. Influences of forest fires on the permafrost environment: A review[J]. Advances in Climate Change Research, 2021, 12(1): 48-65. |
54 | Wu Weijiang. Slide accelerated by water entrapment due to seasonal freezing[J]. Journal of Glaciolgy and Geocryology, 1997, 19(4): 359-365. |
吴玮江. 季节性冻结滞水促滑效应-滑坡发育的一种新因素[J]. 冰川冻土, 1997, 19(4): 359-365. | |
55 | Holloway J E, Lewkowicz A G, Douglas T A, et al. Impact of wildfire on permafrost landscapes: a review of recent advances and future prospects[J]. Permafrost and Periglacial Processes, 2020, 31(3): 371-382. |
56 | Alan J H, Dave M, Alexandre T, et al. The effects ofthe 1994 and 1995 forest fires on the slopes of the Norman Wells Pipeline[C]//Permafrost-Seventh International Conference. Canada, 1998: 421-426. |
57 | Huscroft C A, Lipovsky P S, Bond J D. Permafrost and landslide activity: case studies from southwestern Yukon Territory[J]. Yukon exploration and geology, 2003: 107-119. |
58 | Lewkowicz A G, Harris C. Frequency and magnitude of active-layer detachment failures in discontinuous and continuous permafrost, northern Canada[J]. Permafrost and Periglacial Processes, 2005, 16(1): 115-130. |
59 | Haeberli W, Noetzli J, Arenson L, et al. Mountain permafrost: Development and challenges of a young research field[J]. Journal of Glaciology, 2010, 56(200): 1043-1058. |
60 | Benedict J B. Frost creep and gelifluction features: A review[J]. Quaternary Research, 1976, 6(1): 55-76. |
61 | Guo Dongxin, Huang Yizhi, Zhao Xiufeng. A preliminary research of soliflution on terraces in Fenghuoshan Pass Basin on Qinghai-Xizang Plateau[J]. Journal of Glaciology and Geocryology, 1993, 15(1): 58-62. |
郭东信, 黄以职, 赵秀锋. 青藏公路风火山垭口盆地融冻泥流阶地初步研究[J]. 冰川冻土, 1993, 15(1): 58-62. | |
62 | Hoque M A, Pollard W H. Arctic coastal retreat through block failure[J]. Canadian Geotechnical Journal, 2009, 46(10): 1103-1115. |
63 | Agliardi F, Crosta G B. Supporting rockfall countermeasure design in difficult conditions[C]//Landslide Science for a Safer Geoenvironment, 2014: 71-76. |
64 | Allen S K, Gruber S, Owens I F. Exploring steep bedrock permafrost and its relationship with recent slope failures in the Southern Alps of New Zealand[J]. Permafrost and Periglacial Processes, 2009, 20(4): 345-356. |
65 | Liu Chuanzheng. Genetic types of landslide and debris flow disasters in China[J]. Geological Review, 2014, 60(4): 858-868. |
刘传正. 中国崩塌滑坡泥石流灾害成因类型[J]. 地质论评, 2014, 60(4): 858-868. | |
66 | Savigny K W, Morgenstern N R. Creep behaviour of undisturbed clay permafrost[J]. Canadian Geotechnical Journal, 1986, 23(4): 515-527. |
67 | Savigny K W, Morgenstern N R. In situ creep properties in ice-rich permafrost soil[J]. Canadian Geotechnical Journal, 1986, 23(4): 504-514. |
68 | Foriero A, Ladanyi B, Dallimore S R, et al. Modelling of deep seated hill slope creep in permafrost[J]. Canadian Geotechnical Journal, 1998, 35(4): 560-578. |
69 | Yang Suiqiao, Wang Ningning, Zhang Hu. Study on creep test and creep model of warm frozen soil[J]. Journal of Glaciology and Geocryology, 2020, 42(3): 834-842. |
杨岁桥, 王宁宁, 张虎. 高温冻土的蠕变特性试验及蠕变模型研究[J]. 冰川冻土, 2020, 42(3): 834-842. | |
70 | Sadeghiamirshahidi M, Vitton S. Slope movement in permafrost near Fairbanks, Alaska[C]//Geo-Chicago: 2016. Chicago, Illinois. Reston, VA, USA: American Society of Civil Engineers, 2016: 563-573. |
71 | Wu Qingbai, Zhang Zhongqiong, Liu Ge. Relationships between climate warming and engineering stability of permafrost on Qinghai-Tibet Plateau[J]. Journal of Engineering Geology, 2021, 29(2): 342-352. |
吴青柏,张中琼,刘戈. 青藏高原气候转暖与冻土工程的关系[J]. 工程地质学报, 2021, 29(2): 342-352. | |
72 | Bai Yun, Xie Lei, Chen Hao. Characteristics and formation mechanism of gelifluction in frozen soil area of Youhulu section of Heihe River Basin in Qilian Mountains[J]. Resource Information and Engineering, 2019, 34(6): 100-104. |
白云, 谢雷, 陈豪. 祁连山黑河流域油葫芦段冻土区融冻泥流特征及其形成机理[J]. 资源信息与工程, 2019, 34(6): 100-104. | |
73 | Geertsema M, Clague J J, Schwab J W, et al. An overview of recent large catastrophic landslides in northern British Columbia, Canada[J]. Engineering Geology, 2006, 83(1/2/3): 120-143. |
74 | Ma Wei, Zhou Guoqing, Niu Fujun, et al. Progress and prospect of the basic research on the major permafrost projects in the Qinghai-Tibet Plateau[J]. China Basic Science, 2016, 18(6): 9-19. |
马巍, 周国庆, 牛富俊, 等. 青藏高原重大冻土工程的基础研究进展与展望[J]. 中国基础科学, 2016, 6: 9-19. | |
75 | Zeng Runqiang. Research on the stability of the slopes on the loess terraces: a case study in Lanzhou district[D]. Lanzhou: Lanzhou University, 2015. |
曾润强. 黄土阶地斜坡的稳定性分析研究——以兰州地区为例[D]. 兰州: 兰州大学, 2015. | |
76 | Li Shihai, Liu Tianping, Liu Xiaoyu. Analysis method for landslide stability[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(): 3309-3324. |
李世海, 刘天苹, 刘晓宇. 论滑坡稳定性分析方法[J]. 岩石力学与工程学报, 2009, 28(): 3309-3324. | |
77 | Zou Guangdian, Wei Rulong. Study of theory and method for numerical solution of general limit equilibrium method[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(2): 363-370. |
邹广电, 魏汝龙. 土坡稳定分析普遍极限平衡法数值解的理论及方法研究[J]. 岩石力学与工程学报, 2006, 25(2): 363-370. | |
78 | Huang Menghong, Ding Hua. Some assumption conditions of limit equilibrium method for slope stability analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(12): 2529-2536. |
黄梦宏, 丁桦. 边坡稳定性分析极限平衡法的简化条件[J]. 岩石力学与工程学报, 2006, 25(12): 2529-2536. | |
79 | Liu Hongshuai, Bo Jingshan, Geng Dongqing, et al. Rock landslide stability analysis by finite element method[J]. Rock and Soil Mechanics, 2004, 25(11): 1786-1790. |
刘红帅, 薄景山, 耿冬青, 等. 岩质滑坡稳定性有限元分析[J]. 岩土力学, 2004, 25(11): 1786-1790. | |
80 | Zheng Yingren, Zhao Shangyi, Kong Weixue, et al. Geotechnical engineering limit analysis using finite element method[J]. Rock and Soil Mechanics, 2005, 26(1): 163-168. |
郑颖人, 赵尚毅, 孔位学, 等. 极限分析有限元法讲座—Ⅰ岩土工程极限分析有限元法[J]. 岩土力学, 2005, 26(1): 163-168. | |
81 | Zhang Jiru. Finite element simulation and stability analysis on slope excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(6): 843-847. |
张季如. 边坡开挖的有限元模拟和稳定性评价[J]. 岩石力学与工程学报, 2002, 21(6): 843-847. | |
82 | Shen Yupeng, Xu Zhaoyi, Wang Lianjun. Analysis of stability of thawing slopes on roadbed of Qinghai-Tibet Railway[J]. China Safety Science Journal, 2005, 15(7): 97-100, 1. |
沈宇鹏, 许兆义, 王连俊. 青藏铁路路基中正融土斜坡稳定性分析[J]. 中国安全科学学报, 2005, 15(7): 97-100, 1. | |
83 | Lv Qing, Sun Hongyue, Shang Yuequan. Slope failure criteria of shear strength reduction finite element method[J]. Journal of Zhejiang University (Engineering Science), 2008, 42(1): 83-87. |
吕庆, 孙红月, 尚岳全. 强度折减有限元法中边坡失稳判据的研究[J]. 浙江大学学报(工学版), 2008, 42(1): 83-87. | |
84 | Chu Zhicheng, Chen Penghui, Lei Shengyou, et al. Sensibility analysis of the influence factors on stability of permafrost slope[J]. Journal of Henan Polytechnic University, 2020, 39(5): 146-153. |
褚志成, 陈鹏辉, 雷胜友, 等. 多年冻土边坡稳定性影响因素敏感性分析[J]. 河南理工大学学报, 2020, 39(5): 146-153. | |
85 | Zhang Yuan, Dong Jianhua, Dong Xuguang, et al. Analysis of freezing and thawing of slope improved by soil nailing structure in seasonal frozen soil region[J]. Rock and Soil Mechanics, 2017, 38(2): 574-582, 592. |
张媛, 董建华, 董旭光, 等. 季节性冻土区土钉边坡支护结构冻融反应分析[J]. 岩土力学, 2017, 38(2): 574-582, 592. | |
86 | Wang Wenli, Wang Lanmin, Zheng Long. The freeze-thaw cycling effects on slope stability in earthquake[J]. Technology for Earthquake Disaster Prevention, 2013, 8(2): 156-163. |
王文丽, 王兰民, 郑龙. 冻融循环作用下边坡地震动稳定性研究[J]. 震灾防御技术, 2013, 8(2): 156-163. | |
87 | Liu Mingwei, Zheng Yingren. Determination methods of multi-slip surfaces landslide based on strength reduction FEM[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(8): 1544-1549. |
刘明维, 郑颖人. 基于有限元强度折减法确定滑坡多滑动面方法[J]. 岩石力学与工程学报, 2006, 25(8): 1544-1549. | |
88 | Lin Hongzhou, Yu Yuzhen, Li Guangxin, et al. Finite element method with consideration shear strength reduction for prediction of landslide[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2): 229-233. |
林鸿州, 于玉贞, 李广信, 等. 强度折减有限元法在滑坡特性预测的应用探讨[J]. 岩土工程学报, 2009, 31(2): 229-233. | |
89 | Zheng Yingren, Zhao Shangyi. Calculation of inner force of support structure for landslide/slope by using strength reduction fem[J]. Chinese Journal of Rock Mechanics and Engineering 2004, 23(20): 3552-3558. |
郑颖人, 赵尚毅. 用有限元强度折减法求边(滑)坡支挡结构的内力[J]. 岩石力学与工程学报, 2004, 23(20): 3552-3558. | |
90 | Chen Tao, Zhong Ziying, Niu Ruiqing, et al. . Mapping landslide susceptibility based on deep belief network[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1809-1817. |
陈涛, 钟子颖, 牛瑞卿, 等. 利用深度信念网络进行滑坡易发性评价[J]. 武汉大学学报信息科学版, 2020, 45(11): 1809-1817. | |
91 | Kääb A, Huggel C, Fischer L, et al. Remote sensing of glacier and permafrost-related hazards in high mountains: An overview[J]. Natural Hazards and Earth System Sciences, 2005, 5(4): 527-554. |
92 | Harris C, Davies M C R, Etzelmüller B. The assessment of potential geotechnical hazards associated with mountain permafrost in a warming global climate[J]. Permafrost and Periglacial Processes, 2001, 12(1): 145-156. |
93 | Liu Qiang, Huang Delong, Tang Aiping, et al. Model performance analysis for landslide susceptibility in cold regions using accuracy rate and fluctuation characteristics[J]. Natural Hazards, 2021, 108(1): 1047-1067. |
94 | Harris C. Climate change, mountain permafrost degradation and geotechnical hazard[M]//Global change and mountain regions. Springer, Dordrecht, 2005: 215-224. |
95 | Zhao Tao, Zhang Mingyi, Pei Wansheng, et al. Application of the differential interferometric synthetic aperture radar (D-InSAR)technology to monitor the ground surface deformation in permafrost regions[J]. Journal of Glaciology and Geocryology, 2020, 42(3): 1087-1097. |
赵韬, 张明义, 裴万胜, 等. 合成孔径雷达差分干涉测量(D-InSAR)技术在多年冻土区地表变形监测中的应用[J]. 冰川冻土, 2020, 42(3): 1087-1097. | |
96 | Daout S, Doin M P, Peltzer G, et al. Large-scale InSAR monitoring of permafrost freeze‐thaw cycles on the Tibetan Plateau[J]. Geophysical Research Letters, 2017, 44(2): 901-909. |
97 | Chen Jingyi, Wu Yue, O'Connor M, et al. Active layer freeze-thaw and water storage dynamics in permafrost environments inferred from InSAR[J]. Remote Sensing of Environment, 2020, 248: 112007. |
98 | Rykhus R P, Lu Z. InSAR detects possible thaw settlement in the Alaskan Arctic Coastal Plain[J]. Canadian Journal of Remote Sensing, 2008, 34(2): 100-112. |
99 | Hole J Holley R, Giunta G, et al. InSAR assessment pipeline stability using compact active transponders[C]//Proceedings of FRINGE2011, 8th International Workshop on “Advances in the Science and Applications of SAR Interferometry”. Italy, 2011: 19-23. |
100 | Singhroy V, Alasset P J, Couture R, et al. InSAR monitoring of landslides on permafrost terrain in Canada[C]//2007 IEEE International Geoscience and Remote Sensing Symposium. Barcelona, Spain. Piscataway, NJ: IEEE, 2007: 2451-2454. |
101 | Liu Lin, Schaefer K, Zhang Tingjun, et al. Estimating 1992-2000 average active layer thickness on the Alaskan North Slope from remotely sensed surface subsidence[J]. Journal of Geophysical Research: Earth Surface, 2012, 117(F1): 1-14. |
102 | Liu Lin, Zhang Tingjun, Wahr J. InSAR measurements of surface deformation over permafrost on the North Slope of Alaska[J]. Journal of Geophysical Research Atmospheres, 2010, 115(F3): F03023. |
103 | Xie Chou, Li Zhen, Li Xinwu. A improved permanent scatterers method for analysis of deformation over permafrost regions of the Qinghai-Tibetan Plateau[J]. Geomatics and Information Science of Wuhan University, 2009, 34(10): 1199-1203. |
谢酬, 李震, 李新武. 青藏高原冻土形变监测的永久散射体方法研究[J]. 武汉大学学报信息科学版, 2009, 34(10): 1199-1203. | |
104 | Jorgenson M, Racine C, Walters J, et al. Permafrost degradation and ecological changes associated with a warming climate in central Alaska[J]. Climatic Change, 2001, 48: 551-579. |
105 | Cannone N, Lewkowicz A G, Guglielmin M. Vegetation colonization of permafrost-related landslides, Ellesmere Island, Canadian high Arctic[J]. Journal of Geophysical Research Atmospheres, 2010, 115(G4): G04020. |
106 | Li Xinxing, Liu Guimin, Wu Xiaoli, et al. Soil C, N and P contents in thaw slump-affected areas on the northeastern Tibetan Plateau[J]. Environmental Science & Technology, 2020, 43(1): 37-44. |
李新星, 刘桂民, 吴小丽. 青藏高原东北部热融滑塌区土壤碳氮磷含量[J]. 环境科学与技术, 2020, 43(1): 37-44. | |
107 | Lantz T C, Kokelj S V, Gergel S E, et al. Relative impacts of disturbance and temperature: persistent changes in microenvironment and vegetation in retrogressive thaw slumps[J]. Global Change Biology, 2009, 15(7): 1664-1675. |
108 | Zhang Xiaolan, Liu Guimin, Xu Haiyan, et al. Effects of thaw slump on the bacterial community in a desert steppe in the Beiluhe Region of the Qinghai-Tibet Plateau[J]. Chinese Journal of Applied and Environmental Biology, 2019, 25(6): 1327-1334. |
张晓兰, 刘桂民, 徐海燕, 等. 热融滑塌对青藏高原北麓河荒漠草原土壤细菌群落的影响[J]. 应用与环境生物学报, 2019, 25(6): 1327-1334. | |
109 | Kokelj S V, Jenkins R E, Milburn D, et al. The influence of thermokarst disturbance on the water quality of small upland lakes, Mackenzie Delta region, Northwest Territories, Canada[J]. Permafrost and Periglacial Processes, 2005, 16(4): 343-353. |
110 | Couture R, Cruden D M. More comprehensive characterization of landslides in permafrost[C]//Proceedings 63rd Canadian Geotechnical Conference. Calgary, 2010: 855-861. |
111 | Mu Cuicui, Abbott B W, Norris A J, et al. The status and stability of permafrost carbon on the Tibetan Plateau[J]. Earth-Science Reviews, 2020, 211: 103433. |
112 | Jia Lin, Fan Chengyan, Mu Mei, et al. Studies of thermokarst and its effects on ecosystem carbon cycle in the Third Polar regions and the Arctic[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 157-169. |
贾麟, 范成彦, 母梅, 等. 从第三极到北极:_热喀斯特及其对碳循环影响研究进展[J]. 冰川冻土, 2020, 42(1): 157-169. | |
113 | Mu Cuicui. Thermokarst terrains change landscape and earth surface processes[J]. Chinese Journal of Nature, 2020, 42(5): 386-392. |
牟翠翠. 热喀斯特改变多年冻土区景观和地表过程[J]. 自然杂志, 2020, 42(5): 386-392. | |
114 | Ma Lifeng, Niu Fujun, Liu Jiankun, et al. Numerical analysis of ground temperature regime and preventing measures of typical thaw slumping[J]. Journal of Beijing Jiaotong University, 2009, 33(4): 134-139. |
马立峰, 牛富俊, 刘建坤, 等. 冻土区典型热融滑塌地温变化及防治效果模拟[J]. 北京交通大学学报, 2009, 33(4): 134-139. | |
115 | Peng Hui, Dong Yuanhong, Shao Guangjun, et al. Research on key points of exploration and treatment measures of thermal slip disaster in Qinghai-Tibet Project Corridor[J]. Journal of Catastrophology, 2019, 34(S1): 72-76. |
彭惠, 董元宏, 邵广军, 等. 青藏工程走廊热融滑塌灾害勘设要点与工程处治措施研究[J]. 灾害学, 2019, 34(S1): 72-76. |
[1] | 陈龙飞, 张万昌, 高会然. 三江源地区1980—2019年积雪时空动态特征及其对气候变化的响应[J]. 冰川冻土, 2022, 44(1): 133-146. |
[2] | 刘金平, 任艳群, 张万昌, 陶辉, 易路. 雅鲁藏布江流域气候和下垫面变化对径流的影响研究[J]. 冰川冻土, 2022, 44(1): 275-287. |
[3] | 达伟, 王书峰, 沈永平, 陈安安, 毛炜峄, 张伟. 1957—2019年昆仑山北麓车尔臣河流域水文情势及其对气候变化的响应[J]. 冰川冻土, 2022, 44(1): 46-55. |
[4] | 李智斌, 赵林, 刘广岳, 邹德富, 汪凌霄, 杨斌, 杜二计, 胡国杰, 周华云, 王翀, 幸赞品, 赵建婷, 殷秀峰, 迟鸿飞, 谭昌海, 陈文. 冻结季沱沱河源多年冻土区活动层土壤水分含量分析[J]. 冰川冻土, 2022, 44(1): 56-68. |
[5] | 周华云, 刘广岳, 杨斌, 邹德富, 赵林, 杜二计, 谭昌海, 陈文, 杨朝磊, 文浪, 旺扎多吉, 张浔浔, 肖瑶, 胡国杰, 李智斌, 谢昌卫, 汪凌霄, 刘世博. 长江上游沱沱河源区多年冻土发育特征[J]. 冰川冻土, 2022, 44(1): 69-82. |
[6] | 刘广岳, 邹德富, 杨斌, 杜二计, 周华云, 肖瑶, 赵林, 谭昌海, 胡国杰, 庞强强, 王武, 孙哲, 朱小凡, 殷秀峰, 汪凌霄, 李智斌, 谢昌卫. 青藏高原腹地各拉丹冬南北坡多年冻土考察初步结果[J]. 冰川冻土, 2022, 44(1): 83-95. |
[7] | 罗京, 牛富俊, 林战举, 刘明浩, 尹国安, 高泽永. 青藏高原多年冻土区热融滑塌发育特征及规律[J]. 冰川冻土, 2022, 44(1): 96-105. |
[8] | 高文德,王昱,李宗省,王文胜,杨盛梅. 高寒内流区极端降水的气候变化特征分析[J]. 冰川冻土, 2021, 43(6): 1693-1703. |
[9] | 李飞,郭佳锴,张世强. VIC-CAS导热率和未冻水算法改进及其对多年冻土水热过程模拟的实验研究[J]. 冰川冻土, 2021, 43(6): 1888-1903. |
[10] | 王一博,吕明侠,赵海鹏,高泽永. 青藏高原多年冻土区活动层土壤入渗特征及机理分析[J]. 冰川冻土, 2021, 43(5): 1301-1311. |
[11] | 范星文,林战举,罗京,刘明浩,尹国安,高泽永. 高海拔多年冻土区路基工程行为对低温多年冻土长期影响的监测研究[J]. 冰川冻土, 2021, 43(5): 1323-1333. |
[12] | 王蓝翔,董慧科,龚平,王传飞,吴晓东. 多年冻土退化下碳、氮和污染物循环研究进展[J]. 冰川冻土, 2021, 43(5): 1365-1382. |
[13] | 唐志光,邓刚,胡国杰,王欣,蒋宗立,桑国庆. 亚洲高山区积雪物候时空动态及其对气候变化的响应[J]. 冰川冻土, 2021, 43(5): 1400-1411. |
[14] | 冯晓琳,张艳林,常晓丽. 大兴安岭湿地多年冻土区活动层水热特征分析[J]. 冰川冻土, 2021, 43(5): 1468-1479. |
[15] | 姚俊强,陈静,迪丽努尔·托列吾别克null,韩雪云,毛炜峄. 新疆气候水文变化趋势及面临问题思考[J]. 冰川冻土, 2021, 43(5): 1498-1511. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000