1 |
Immerzeel W W, van Beek L P H, Bierkens M F P. Climate change will affect the Asian Water Towers[J]. Science, 2010, 328(5984): 1382-1385.
|
2 |
Yao Tandong, Wu Guangjian, Xu Baiqing, et al. Asian Water Tower change and its impacts[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1203-1209.
|
|
姚檀栋, 邬光剑, 徐柏青, 等. “亚洲水塔”变化与影响[J]. 中国科学院院刊, 2019, 34(11): 1203-1209.
|
3 |
Zhao Lin, Zou Defu, Hu Guojie, et al. Changing climate and the permafrost environment on the Qinghai-Tibet (Xizang) Plateau[J]. Permafrost and Periglacial Processes, 2020, 31: 396-405.
|
4 |
Zhao Lin, Hu Guojie, Zou Defu, et al. Permafrost changes and its effects on hydrological processes on Qinghai-Tibet Plateau[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1233-1245.
|
|
赵林, 胡国杰, 邹德富, 等. 青藏高原多年冻土变化对水文过程的影响[J]. 中国科学院院刊, 2019, 34(11): 1233-1245.
|
5 |
Cheng Guodong, Zhao Lin, Li Ren, et al. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2019, 64(27): 2783-2795.
|
|
程国栋, 赵林, 李韧, 等. 青藏高原多年冻土特征、变化及影响[J]. 科学通报, 2019, 64(27): 2783-2795.
|
6 |
McKenzie J M, Voss C I. Permafrost thaw in a nested groundwater-flow system[J]. Hydrogeology Journal, 2013, 21(1): 299-316.
|
7 |
Cheng Guodong, Jin Huijun. Groundwater in the permafrost regions on the Qinghai-Tibet Plateau and it changes[J]. Hydrogeology & Engineering Geology, 2013, 40(1): 1-10.
|
|
程国栋, 金会军. 青藏高原多年冻土区地下水及其变化[J]. 水文地质工程地质, 2013, 40(1): 1-10.
|
8 |
Zou Defu, Zhao Lin, Sheng Yu, et al. A new map of permafrost distribution on the Tibetan Plateau[J]. The Cryosphere, 2017, 11(6): 2527-2542.
|
9 |
Yao Tandong. A comprehensive study of water-ecosystem-human activities reveals unbalancing Asian Water Tower and accompanying potential risks[J]. Chinese Science Bulletin, 2019, 64(27): 2761-2762.
|
|
姚檀栋. 青藏高原水—生态—人类活动考察研究揭示"亚洲水塔"的失衡及其各种潜在风险[J]. 科学通报, 2019, 64(27): 2761-2762.
|
10 |
Yang Jianping, Ding Yongjian, Chen Rensheng, et al. Permafrost change and its effect on eco-environment in the source regions of the Yangtze and Yellow Rivers[J]. Journal of Mountain Science, 2004, 22(3): 278-285.
|
|
杨建平, 丁永建, 陈仁升, 等. 长江黄河源区多年冻土变化及其生态环境效应[J]. 山地学报, 2004, 22(3): 278-285.
|
11 |
Zheng Ran, Li Dongliang, Jiang Yuanchun. New characteristics of temperature change over Qinghai-Xizang Plateau on the background of global warming[J]. Plateau Meteorology, 2015, 34(6): 1531-1539.
|
|
郑然, 李栋梁, 蒋元春. 全球变暖背景下青藏高原气温变化的新特征[J]. 高原气象, 2015, 34(6): 1531-1539.
|
12 |
Wang Kunxin, Zhang Yinsheng, Zhang Teng, et al. Analysis of climate change in the Selin Co basin, Tibetan Plateau, from 1979 to 2017[J]. Arid Zone Research, 2020, 37(3): 652-662.
|
|
王坤鑫, 张寅生, 张腾, 等. 1979—2017年青藏高原色林错流域气候变化分析[J]. 干旱区研究, 2020, 37(3): 652-662.
|
13 |
Han Li, Song Kechao, Zhang Wenjiang, et al. Temporal and spatial variations of hydrological factors in the source area of the Yangtze River and its responses to climate change[J]. Mountain Research, 2017, 35(2): 129-141.
|
|
韩丽, 宋克超, 张文江, 等. 长江源头流域水文要素时空变化及对气候因子的响应[J]. 山地学报, 2017, 35(2): 129-141.
|
14 |
Luo Yu, Qin Ningsheng, Pang Yishu, et al. Effect of climate warming on the runoff of source regions of the Yangtze River: take Tuotuo River basin as an example[J]. Journal of Glaciology and Geocryology, 2020, 42(3): 952-964.
|
|
罗玉, 秦宁生, 庞轶舒, 等. 气候变暖对长江源径流变化的影响分析: 以沱沱河为例[J]. 冰川冻土, 2020, 42(3): 952-964.
|
15 |
Yu Qihao, Bai Yang, Jin Huijun, et al. The study of the patchy permafrost along the Heihe-Bei’an Highway in Xiao Hinggan Mountains with ground penetrating radar[J]. Journal of Glaciology and Geocryology, 2008, 30(3): 461-468.
|
|
俞祁浩, 白旸, 金会军, 等. 应用探地雷达研究中国小兴安岭地区黑河—北安公路沿线岛状多年冻土的分布及其变化[J]. 冰川冻土, 2008, 30(3): 461-468.
|
16 |
Du Erji, Zhao Lin, Li Ren. The application of ground penetrating radar to permafrost investigation in Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2009, 31(2): 364-371.
|
|
杜二计, 赵林, 李韧. 探地雷达在祁连山多年冻土调查中的应用[J]. 冰川冻土, 2009, 31(2): 364-371.
|
17 |
Wang Wu, Zhao Lin, Liu Guangyue, et al. Geophysical mapping of permafrost using TEM[J]. Journal of Glaciology and Geocryology, 2011, 33(1): 156-163.
|
|
王武, 赵林, 刘广岳, 等. 瞬变电磁法(TEM)在多年冻土区的应用研究[J]. 冰川冻土, 2011, 33(1): 156-163.
|
18 |
Liu Guangyue, Wang Wu, Zhao Lin, et al. Using transient electromagnetic method to sound permafrost depth in the West Kunlun Mountains[J]. Journal of Glaciology and Geocryology, 2015, 37(1): 38-48.
|
|
刘广岳, 王武, 赵林, 等. 基于瞬变电磁法(TEM)的西昆仑地区多年冻土厚度探测与研究[J]. 冰川冻土, 2015, 37(1): 38-48.
|
19 |
Li Yalin, Wang Chengshan, Wang Mou, et al. Morphological features of river valleys in the source region of the Yangtze River, northern Tibet, and their response to neotectonic movement[J]. Geology in China, 2006, 33(2): 374-382.
|
|
李亚林, 王成善, 王谋, 等. 藏北长江源地区河流地貌特征及其对新构造运动的响应[J]. 中国地质, 2006, 33(2): 374-382.
|
20 |
Wu Zhonghai, Wu Zhenhan, Hu Daogong, et al. The evidence for Quaternary left-lateral shear deformation in central Qinghai-Tibet Plateau[J]. Geoscience, 2003, 17(4): 363-369.
|
|
吴中海, 吴珍汉, 胡道功, 等. 青藏高原中部第四纪左旋剪切变形的地表地质证据[J]. 现代地质, 2003, 17(4): 363-369.
|
21 |
An Zhongyuan. Discussion of pingo formation and evolution on the Qinghai-Tibet Plateau: a case study of pingo which is near the No. 62 maintenance team of Qing-Zang Highway[J]. Journal of Glaciology and Geocryology, 1980, 2(2): 25-30.
|
|
安钟元. 青藏高原多年生冰丘形成及其演变规律的探讨: 以青藏公路六十二道班冰丘为例[J]. 冰川冻土, 1980, 2(2): 25-30.
|
22 |
Wu Jichun, Sheng Yu, Cao Yuanbing, et al. Discovery of large frost mound clusters in the source regions of the Yellow River on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2015, 37(5): 1217-1228.
|
|
吴吉春, 盛煜, 曹元兵, 等. 青藏高原发现大型冻胀丘群[J]. 冰川冻土, 2015, 37(5): 1217-1228.
|
23 |
Xu Gang, Wu Kunyu, Wang Peng, et al. Hydrogeochemical characteristics of the geothermal field in Wenquan[J]. Carsologica Sinica, 2020, 39(3): 15-26.
|
|
徐刚, 伍坤宇, 王鹏, 等. 藏北温泉盆地地热田水文地球化学特征研究[J]. 中国岩溶, 2020, 39(3): 15-26.
|
24 |
Yoshikawa K, Sharkhuu N, Sharkhuu A. Groundwater hydrology and stable isotope analysis of an open-system pingo in northwestern Mongolia[J]. Permafrost and Periglacial Processes, 2013, 24: 175-183.
|
25 |
Schmid M O, Baral P, Gruber S, et al. Assessment of permafrost distribution maps in the Hindu Kush Himalayan region using rock glaciers mapped in Google Earth[J]. The Cryosphere, 2015, 9: 2089-2099.
|