1 |
Hirabayashi Y, Mahendran R, Koirala S, et al. Global flood risk under climate change[J]. Nature Climate Change, 2013, 3(9): 816-821.
|
2 |
Choubin B, Moradi E, Golshan M, et al. An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines[J]. Science of the Total Environment, 2019, 651: 2087-2096.
|
3 |
Groisman P Y, Knight R W, Karl T R. Heavy precipitation and high streamflow in the contiguous United States: Trends in the twentieth century[J]. Bulletin of the American Meteorological Society, 2001, 82(2): 219-246.
|
4 |
Mallakpour I, Villarini G. The changing nature of flooding across the central United States[J]. Nature Climate Change, 2015, 5(3): 250-254.
|
5 |
Milly P C D, Wetherald R T, Dunne K A, et al. Increasing risk of great floods in a changing climate[J]. Nature, 2002, 415(6871): 514-517.
|
6 |
Wang H, Chen Y, Deng H, et al. Detecting changes in extreme streamflow in the Tarim River, Northwest China[J]. Quaternary International, 2015, 380: 149-158.
|
7 |
Duethmann D, Menz C, Jiang T, et al. Projections for headwater catchments of the Tarim River reveal glacier retreat and decreasing surface water availability but uncertainties are large[J]. Environmental Research Letters, 2016, 11(5): 054024.
|
8 |
Xinjiang Tarim River Basin Aksu Management Bureau. Aksu River basin chronicles[M]. Beijing: Fangzhi Press, 2006.
|
|
阿克苏河流域管理处. 阿克苏河流域志[M]. 北京: 方志出版社, 2006.
|
9 |
Ye Baisong, Zhao Chengyi, Jiang Fengqing, et al. Characteristics of the flood and drought disasters in the Tarim River basin in recent 300 years[J]. Journal of Glaciology and Geocryology, 2014, 36(1): 173-182.
|
|
叶柏松, 赵成义, 姜逢清, 等. 近300年来塔里木河流域旱涝灾害特征分析[J]. 冰川冻土, 2014, 36(1): 173-182.
|
10 |
Gu Xihui, Zhang Qiang, Sun Peng, et al. Magnitude, frequency and timing of floods in the Tarim River, Xinjiang: characteristics, causes and impacts[J]. Acta Geographica Sinica, 2015, 70(9): 1390-1401.
|
|
顾西辉, 张强, 孙鹏, 等. 新疆塔河流域洪水量级, 频率及峰现时间变化特征, 成因及影响[J]. 地理学报, 2015, 70(9): 1390-1401.
|
11 |
Zhang Q, Gu X H, Singh V P, et al. Magnitude, frequency and timing of floods in the Tarim River basin, China: changes, causes and implications[J]. Global and Planetary Change, 2016, 139: 44-55.
|
12 |
Mao Weiyi, Wu Jun, Chen Chunyan. Relationship of 0 ℃ level height and summer flood of Aksu River, Xinjiang[J]. Journal of Glaciology and Geocryology, 2004, 26(6): 697-704.
|
|
毛炜峄, 吴钧, 陈春艳. 0 ℃层高度与夏季阿克苏河洪水的关系[J]. 冰川冻土, 2004, 26(6): 697-704.
|
13 |
Shen Yongping, Wang Guoya, Ding Yongjian, et al. Changes in Merzbacher Lake of Inylchek Glacier and glacial flash floods in Aksu River Basin, Tianshan during the Period of 1903-2009[J]. Journal of Glaciology and Geocryology, 2009, 31(6): 993-1002.
|
|
沈永平, 王国亚, 丁永建, 等. 百年来天山阿克苏河流域麦茨巴赫冰湖演化与冰川洪水灾害[J]. 冰川冻土, 2009, 31(6): 993-1002.
|
14 |
Wang X, Ding Y J, Liu S Y, et al. Changes of glacial lakes and implications in Tian Shan, central Asia, based on remote sensing data from 1990 to 2010[J]. Environmental Research Letters, 2013, 8(4): 575-591.
|
15 |
Liu Shiyin, Cheng Guodong, Liu Jingshi. Jokulhlaup characteristics of the Lake Mertzbakher in the Tianshan Mountains and its relation to climate change[J]. Journal of Glaciology and Geocryology, 1998, 20(1): 30-35.
|
|
刘时银, 程国栋, 刘景时. 天山麦茨巴赫冰川湖突发洪水特征及其与气候关系的研究[J]. 冰川冻土, 1998, 20(1): 30-35.
|
16 |
Chen Yaning, Yang Siquan, Li Weihong. A study of the fractal characteristics of Jokulhlaups from the Lake Mertzbakher, Tianshan[J]. Journal of Glaciology and Geocryology, 1999, 21(3): 253-256.
|
|
陈亚宁, 杨思全, 李卫红. 天山麦兹巴赫冰川湖突发性洪水分形特征研究[J]. 冰川冻土, 1999, 21(3): 253-256.
|
17 |
Chen Yaning. Hydro-ecological processes of the Tarim River Basin in Xinjiang[M]. Beijing: Scientific Press, 2010. [陈亚宁, 新疆塔里木河流域生态水文问题研究[M]. 北京: 科学出版社. 2010.]
|
18 |
Ji H, Fang G, Yang J, et al. Multi-objective calibration of a distributed hydrological model in a highly glacierized watershed in Central Asia[J]. Water, 2019, 11(3): 554.
|
19 |
Xie Zunyi. Remote sensing monitoring and early-warning of glacier lake outbrust flood of Merzbarcher Lake, Tienshan Mts., Center Asia[D]. Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute (CAREERI), Chinese Academy of Sciences (CAS), 2012.
|
|
谢遵义. 中亚天山麦兹巴赫冰川湖突发洪水遥感监测与预警研究[D]. 兰州: 中国科学院寒区旱区环境与工程研究所, 2012.
|
20 |
Li Da, Donghui Shanguan, Huang Weidong. Study on the area change of Lake Merzbacher in the Tianshan Mountains during 1998—2017[J]. Journal of Glaciology and Geocryology, 2020, 42(4): 1126-1134.
|
|
李达, 上官冬辉, 黄维东. 天山麦兹巴赫冰川湖1998—2017年面积变化相关研究[J]. 冰川冻土, 2020, 42(4): 1126-1134.
|
21 |
Liu J. Jökulhlaups in the Kunmalike River, southern Tien Shan Mountains, China[J]. Annals of Glaciology, 1992, 16: 85-88.
|
22 |
Ng F, Liu S. Temporal dynamics of a Jokulhlaup system[J]. Journal of Glaciology, 2009, 55(192): 651-665.
|
23 |
Shangguan D, Ding Y, Liu S, et al. Quick release of internal water storage in a glacier leads to underestimation of the hazard potential of glacial lake outburst floods from lake Merzbacher in central Tianshan mountains[J]. Geophysical Research Letters, 2017, 44(19): 9786-9795.
|
24 |
Bezak N, Brilly M, Šraj M. Comparison between the peaks-over-threshold method and the annual maximum method for flood frequency analysis[J]. Hydrological Sciences Journal, 2014, 59(5): 959-977.
|
25 |
Ma Y, Huang Y, Liu T. Change and climatic linkage for extreme flows in typical catchments of middle Tianshan Mountain, northwest China[J]. Water, 2018, 10(8): 1061.
|
26 |
Guo Shenglian, Liu Zhangjun, Xiong Lihua. Advances and assessment on design flood estimation methods[J]. Journal of Hydraulic Engineering, 2016, 47(3): 302-314.
|
|
郭生练, 刘章君, 熊立华. 设计洪水计算方法研究进展与评价[J]. 水利学报, 2016, 47(3): 302-314.
|
27 |
Lang M, Ouarda T B M J, Bobée B. Towards operational guidelines for over-threshold modeling[J]. Journal of hydrology, 1999, 225(3/4): 103-117.
|
28 |
Cunnane C. A particular comparison of annual maxima and partial duration series methods of flood frequency prediction[J]. Journal of Hydrology, 1973, 18(3/4): 257-271.
|
29 |
Fischer S, Schumann A. Robust flood statistics: comparison of peak over threshold approaches based on monthly maxima and TL-moments[J]. Hydrological Sciences Journal, 2016, 61(3): 457-470.
|
30 |
Petrow T, Merz B. Trends in flood magnitude, frequency and seasonality in Germany in the period 1951–2002[J]. Journal of Hydrology, 2009, 371(12/3/4): 129-141.
|
31 |
Hamed K H. Trend detection in hydrologic data: the Mann–Kendall trend test under the scaling hypothesis[J]. Journal of Hydrology, 2008, 349(3/4): 350-363.
|
32 |
Li Z, Chen Y, Shen Y, et al. Analysis of changing pan evaporation in the arid region of Northwest China[J]. Water Resources Research, 2013, 49(4): 2205-2212.
|
33 |
Fang G, Yang J, Chen Y, et al. How hydrologic processes differ spatially in a large basin: multisite and multi-objective modeling in the Tarim River Basin[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(4): 7098-7113.
|
34 |
Duethmann D, Bolch T, Farinotti D, et al. Attribution of streamflow trends in snow and glacier melt-dominated catchments of the Tarim River, Central Asia[J]. Water Resources Research, 2015, 51(6): 4727-4750.
|
35 |
Shen Y J, Shen Y, Fink M, et al. Trends and variability in streamflow and snowmelt runoff timing in the southern Tianshan Mountains[J]. Journal of Hydrology, 2018, 557: 173-181.
|
36 |
Chen H, Chen Y, Li W, et al. Quantifying the contributions of snow glacier meltwater to river runoff in the Tianshan Mountains, Central Asia[J]. Global and Planetary Change, 2019, 174: 47-57.
|
37 |
Kingslake J, Ng F. Quantifying the predictability of the timing of Jokulhlaups from Merzbacher Lake, Kyrgyzstan[J]. Journal of Glaciology, 2013, 59(217): 805-818.
|