1 |
Yang Gengshe, Liu Hui. Micro structure and damage mechanical properties of frozen rock based on CT image processing[M]. Beijing: Science Press, 2016.
|
|
杨更社, 刘慧. 基于CT图像处理的冻结岩石细观结构及损伤力学特性[M]. 北京:科学出版社, 2016.
|
2 |
Zhang Bo, Yang Xueying, Li Shucai, et al. Uniaxial tensile failure characteristics of rock materials with two groups of superimposed X-shaped fractures[J]. Journal of China Coal Society, 2017, 42(8) :1987-1993.
|
|
张波, 杨学英, 李术才, 等. 含两组叠置X型裂隙类岩石材料单轴拉伸破坏特征[J]. 煤炭学报, 2017, 42(8):1987-1993.
|
3 |
Li Lielie, Guan Junfeng, Liu Zhiyong. A random discrete element method for modeling rock heterogeneity[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 8(1): 1-13.
|
4 |
Bedford J D, Faulkner D R, Lapusta N. Fault rock heterogeneity can produce fault weakness and reduce fault stability[J]. Nature Communications, 2022, 13(1): 326-326.
|
5 |
Yu Enyi, Jin Aibing, Sun Hao, et al. Evolution characteristics and attenuation model of compressive strength and porosity of limestone under cryogenic freezing-thawing cycles[J]. Mining Research and Development, 2021, 41(10): 55-60.
|
|
于恩毅, 金爱兵, 孙浩, 等. 超低温冻融循环下灰岩抗压强度与孔隙率的演化特征及衰减模型[J]. 矿业研究与开发, 2021, 41(10): 55-60.
|
6 |
Tang Shibin, Luo Jiang, Tang Chunan. Theoretical and numerical simulation of rock fracture induced by low temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(7): 1596-1607.
|
|
唐世斌, 罗江, 唐春安. 低温诱发岩石破裂的理论与数值模拟研究[J]. 岩石力学与工程学报, 2018, 37(7): 1596-1607.
|
7 |
Rong Huren, Gu Jingyu, Rong Miren, et al. Strength and microscopic damage mechanism of yellow sandstone with holes under freezing and thawing[J]. Advances in Civil Engineering, 2020: 1-13.
|
8 |
Meng Fangdong, Zhai Yue, Li Yubai, et al. Experimental study on dynamic tensile properties and energy evolution of sandstone under freeze-thaw cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(12): 2445-2453.
|
|
孟凡东, 翟越, 李宇白, 等. 冻融循环作用后砂岩的动态抗拉性能及能量演化试验研究[J]. 岩石力学与工程学报, 2021, 40(12): 2445-2453.
|
9 |
Liu Jie, Zhang Han, Wang Ruihong, et al. Research on progressive damage degradation of sandstone under freeze-thaw cycles[J]. Rock and Soil Mechanics, 2021, 42(5): 1381-1394.
|
|
刘杰, 张瀚, 王瑞红, 等. 冻融循环作用下砂岩层进式损伤劣化规律研究[J]. 岩土力学, 2021, 42(5): 1381-1394.
|
10 |
Li Jieling, Zhu Longyi, Zhou Keping, et al. Damage characteristics of sandstone pore structure under freezing and thawing[J]. Rock and Soil Mechanics, 2019, 40(9): 3524-3532.
|
|
李杰林, 朱龙胤, 周科平,等. 冻融作用下砂岩孔隙结构损伤特征研究[J]. 岩土力学, 2019, 40(9): 3524-3532.
|
11 |
Wang Yongyan, Liu Xueqing, Su Chuanqi, et al. Experimental study on the effects of freeze-thaw cycles on similar materials with different porosity[J]. Journal of Glaciology and Geocryology, 2018, 40(1): 102-109.
|
|
王永岩, 柳雪庆, 苏传奇, 等 .冻融循环对不同孔隙率页岩相似材料影响的试验研究[J]. 冰川冻土, 2018, 40(1): 102-109.
|
12 |
Lu Yani, Li Xinping, Han Yanhua. Mechanical characteristics of an isotropic sandstone under freeze-thaw cycles[J]. Journal of Glaciology and Geocryology, 2020, 42(3): 889-898.
|
|
路亚妮, 李新平, 韩燕华. 各向异性砂岩冻融力学特性研究[J]. 冰川冻土, 2020, 42(3): 889-898.
|
13 |
Wang Lehua, Jiang Zhaorong, Li Jianlin, et al. The bedding sandstone unloading mechanical properties experimental study in the freeze-thaw cycle conditions[J]. Journal of Glaciology and Geocryology, 2016, 38(4) :1052-1058.
|
|
王乐华, 姜照容, 李建林, 等.冻融循环条件下层理砂岩卸荷力学特性试验研究[J]. 冰川冻土, 2016, 38(4): 1052-1058.
|
14 |
Wen Lei. Li Xibing. Yin Yanbo,et al. Study of physico-mechanical properties of granite porphyry and limestone in slopes of open-pit metal mine under freezing-thawing cycles and their application[J]. Journal of Glaciology and Geocryology, 2014, 36(3): 632-639.
|
|
闻磊, 李夕兵, 尹彦波, 等. 冻融循环作用下花岗斑岩和灰岩物理力学性质对比分析及应用研究[J]. 冰川冻土, 2014, 36(3): 632-639.
|
15 |
Song Yanqi, Ma Hongfa, Liu Jichen,et al. Experimental investigation on the damage characteristics of freeze-thaw limestone by the uniaxial compression and acoustic emission monitoring tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(Supp 1): 2603-2614.
|
|
宋彦琦, 马宏发, 刘济琛, 等. 冻融灰岩单轴声发射损伤特性试验研究[J]. 岩石力学与工程学报, 2022, 41(): 2603-2614.
|
16 |
Jia Yufei, Wang Haocheng, Xia Dong, et al. Study on macroscopic dynamic properties of rock with impact damage on argillaceous siltstone under freeze-thaw[J]. Metal Mine, 2022(2): 36-41.
|
|
贾淯斐, 王浩程, 夏冬, 等. 泥质粉砂岩冻融作用下含初始损伤岩石动力学特性试验研究[J]. 金属矿山, 2022(2): 36-41.
|
17 |
Yahaghi J, Liu H, Chan A, et al. Experimental and numerical studies on failure behaviours of sandstones subject to freeze-thaw cycles[J]. Transportation Geotechnics, 2021, 31: 100655.
|
18 |
Mahabadi O K, Randall N X, Zong Z, et al. A novel approach for micro-scale characterization and modeling of geomaterials incorporating actual material heterogeneity[J]. Geophysical Research Letters, 2012, 39(1): L01303.
|
19 |
Mahabadi O K, Tatone B S A, Grasselli G. Influence of micro scale heterogeneity and micro structure on the tensile behavior of crystalline rocks[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(7): 5324-5341.
|
20 |
Li Dejian, Qi Hao, Li Chunxiao, et al. Brazilian disc splitting tests and numerical simulations on coal samples containing bedding planes[J]. Journal of Mining Science and Technology, 2020, 5(2): 150-159.
|
|
李德建, 祁浩, 李春晓,等. 含层理面煤试样的巴西圆盘劈裂实验及数值模拟研究[ J]. 矿业科学学报, 2020, 5(2): 150-159.
|
21 |
Hu Xunjian, Zhu Qizhi, Chen Liang, et al. Modeling damage evolution in heterogeneous granite using digital imagebased Grain-Based Model[J]. Rock Mechanics and Rock Engineering, 2020: 4925-4945.
|
22 |
Chen Bin, Xiang Jiansheng, Latham John-Paul, et al. Grain-scale failure mechanism of porous sandstone: an experimental and numerical FDEM study of the Brazilian tensile strength test using CT-scan microstructur[J]. International Journal of Rock Mechanics and Mining Sciences, 2020: 104348.
|
23 |
Dong Fangfang, Zhu Tantan, Qu Zijian, Particle flow-based investigation on the tensile behaviours of rock after freeze-thaw treatment[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2021, 38(3): 22-29.
|
|
董方方, 朱谭谭, 屈子健. 基于颗粒流的富水岩石冻融后拉伸力学行为研究[J]. 河北工程大学学报(自然科学版), 2021, 38(3): 22-29.
|
24 |
Li Mingtian. Study of lattice cellular automaton of numerical simulation of rock failure[D]. Bejing: University of Chinese Academy of Sciences, 2004.
|
|
李明田. 岩石破裂过程数值模拟的格构细胞自动机方法研究[D]. 北京: 中国科学院研究生院, 2004.
|
25 |
Li Mingtian, Feng Xiating, Zhou Hui. Evolving cellular automata for simulating rock failure[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(10): 1656-1660.
|
|
李明田, 冯夏庭, 周辉. 模拟岩石破坏过程的物理细胞演化力学模型[J]. 岩石力学与工程学报, 2003, 22(10): 1656-1660.
|
26 |
Wang Shimin, Feng Xiating, Wang Yongjia, et al. An evolutionary cellular automaton (ECA) study of brittle rock failure[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(15): 2634-2639.
|
|
王士民, 冯夏庭, 王泳嘉, 等. 脆性岩石破坏的演化细胞自动机(ECA)研究[J]. 岩石力学与工程学报, 2005, 24(15): 2634-2639.
|
27 |
Pan Pengzhi, Feng Xiating, Zhou Hui. Three-dimensional cellular automaton simulation of brittle rock fracture evolution[J]. Rock and Soil Mechanics, 2009, 30(5): 1471-1476.
|
|
潘鹏志, 冯夏庭, 周辉. 脆性岩石破裂演化过程的三维细胞自动机模拟[J]. 岩土力学, 2009, 30(5): 1471-1476.
|
28 |
Pan Pengzhi, Feng Xiating, Zhou Hui. Development and applications of the elasto-plastic cellular automaton[J]. Acta Mechanica Solida Sinica, 2012, 25(2): 126-143.
|
29 |
Pan Pengzhi, Yan Fei, Feng Xiating, et al. Modeling of an excavation-induced rock fracturing process from continuity to discontinuity[J]. Engineering Analysis with Boundary Elements, 2019, 106: 286-299.
|
30 |
Mei Li, Mei Wanquan, Pan Pengzhi, et al. Modeling transient excavation-induced dynamic responses in rock mass using an elasto-plastic cellular automaton[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2020: 103183.
|
31 |
Pan Pengzhi, Mei Wanquan. Dynamic response analysis method, software and applications in engineering rockmass based on CASRock[J]. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(3): 1-10.
|
|
潘鹏志, 梅万全. 基于CASRock的工程岩体动力响应分析方法、软件与应用[J]. 隧道与地下工程灾害防治, 2021, 3(3): 1-10.
|
32 |
Feng Xiating, Pan Pengzhi, Wang Zhaofeng, et al. Development of cellular automata software for engineering rockmass fracturing processes[C]//International Conference of the International Association for Computer Methods and Advances in Geomechanics. Torino, Italy: Springer International Publishing, 2021.
|
33 |
China Electricity Council. Standard for tests methods of engineering rock mass [S]. Beijing: China Planning Press, 2013.
|
|
中国电力企业联合会. 工程岩体试验方法标准 [S]. 北京: 中国计划出版社, 2013.
|
34 |
Shen Yanjun, Yang Gengshe, Rong Tenglonget al. Proposed scheme for freeze-thaw cycle tests on rock[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1775-1782.
|
|
申艳军, 杨更社, 荣腾龙, 等. 岩石冻融循环试验建议性方案探讨[J]. 岩土工程学报, 2016, 38(10): 1775-1782.
|
35 |
Wang Xu, Tang Danming, Xia Lina, et al. Contrastive study of chinese and american standards of rock freeze-thaw test[J]. Sichuan Water Power, 2016, 38(3): 111-113.
|
|
王旭, 汤大明, 夏骊娜. 岩石冻融试验的中美标准对比研究[J]. 四川水力发电, 2019, 38(3): 111-113.
|
36 |
Zhang Erfeng, Yang Gengshe, Liu Hui. Experimental study on the meso-damage evolution law ofsandstone under freeze-thaw cycles[J]. Coal Engineering, 2018, 50(10): 50-55.
|
|
张二锋, 杨更社, 刘慧. 冻融循环作用下砂岩细观损伤演化规律试验研究[J]. 煤炭工程, 2018, 50(10): 50-55.
|
37 |
Tan Wenhui, Ba Jing, Guo Mengqiu, et al. Brittleness characteristics of tight oil siltstones[J]. Applied Geophysics, 2018, 15(2): 175-187.
|
38 |
Liu Hui, Yang Gengshe, Ye Wanjun, et al. Analysis of water ice content and damage characteristics of frozen rock based on CT image three-value segmentation[J]. Journal of Mining & Safety Engineering, 2016, 33(6): 1130-1137.
|
|
刘慧, 杨更社, 叶万军, 等. 基于CT图像三值分割的冻结岩石水冰含量及损伤特性分析[J]. 采矿与安全工程学报, 2016, 33(6): 1130-1137.
|
39 |
Pan Pengzhi. Research on rock fracturing process and coupled hydro-mechanical effect using an elasto-plastic cellular automaton[D]. Beijing: University of Chinese Academy of Sciences, 2006.
|
|
潘鹏志. 岩石破裂过程及其渗流-应力耦合特性研究的弹塑性细胞自动机模型[D]. 北京: 中国科学院研究生院, 2006.
|
40 |
Shen Xinpu, Cen Zhangzhi, Xu Bingye. The characteristics of elasto-brittle-plastic softening constitutive theory and its numerical calculation[J]. Journal of Tsinghua University (Science and Technology), 1995, 35(2): 22-27.
|
|
沈新普, 岑章志, 徐秉业. 弹脆塑性软化本构理论的特点及其数值计算[J]. 清华大学学报(自然科学版), 1995, 35(2): 22-27.
|