冰川冻土 ›› 2023, Vol. 45 ›› Issue (1): 243-253.doi: 10.7522/j.issn.1000-0240.2023.0018
收稿日期:
2021-09-13
修回日期:
2022-03-29
出版日期:
2023-02-28
发布日期:
2023-02-25
通讯作者:
德吉
E-mail:1529243754@qq.com;dg971103@163.com
作者简介:
郑艳艳,硕士研究生,主要从事微生物生态学研究. E-mail: 1529243754@qq.com
基金资助:
Yanyan ZHENG(), Xiaofang GUO, 玉珍 Silang, Ji DE(
)
Received:
2021-09-13
Revised:
2022-03-29
Online:
2023-02-28
Published:
2023-02-25
Contact:
Ji DE
E-mail:1529243754@qq.com;dg971103@163.com
摘要:
纳木错位于青藏高原中南部,是该地区独具特色的咸水湖泊。对纳木错夏季沿岸水体可培养细菌物种多样性进行研究,并揭示细菌群落多样性及物种分布与水质理化指标间的相关性。运用直接涂布平板法与稀释涂布平板法来分离湖水中的可培养细菌,细菌菌株的鉴定采用16S rDNA基因序列分析结合经典分类方法,并使用R 4.1.1、SPSS 20.0等软件分析细菌群落多样性。结果显示,从纳木错夏季沿岸水体20个样点中共分离得到681株可培养细菌,鉴定分为16属43种,其中优势种为Acinetobacter johnsonii。Spearman相关系数显示,总磷与总氮均为影响细菌群落多样性的主要理化指标,总磷显著影响细菌总丰度(P<0.05),总氮显著影响Simpson多样性指数(P<0.05)。RDA结果显示,氨氮是影响细菌群落分布的主要理化指标(P<0.05)。本研究初步揭示了纳木错夏季沿岸水体可培养细菌群落多样性,并获得较丰富的细菌菌株资源。
中图分类号:
郑艳艳, 郭小芳, 四郎Silang, 德吉. 青藏高原纳木错夏季沿岸水体可培养细菌多样性及其与理化因子的相关性[J]. 冰川冻土, 2023, 45(1): 243-253.
Yanyan ZHENG, Xiaofang GUO, 玉珍 Silang, Ji DE. Diversity of culturable bacteria and its correlation with physicochemical factors in summer coastal waters of Nam Co, Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2023, 45(1): 243-253.
表1
纳木错各样点水体理化因子差异性分析"
采样点 | pH | EC/(μs·cm-1) | TDS/(mg·L-1) | Salt/(mg·L-1) | T/℃ | COD/ (mg·L-1) | NH4+-N/ (mg·L-1) | TP/ (mg·L-1) | TN/ (mg·L-1) | Turbidity/ NTU |
---|---|---|---|---|---|---|---|---|---|---|
1 | 9.56bcd | 1 759.33f | 1 253.33g | 877.33g | 16.33b | 8.00bc | 0.18f | 0.02cd | 0.29fg | 1a |
2 | 9.40h | 1 857.00c | 1 320.00cd | 923.67c | 12.13k | 4.00e | 0.06q | 0.02cd | 0.15k | 1a |
3 | 9.48ef | 1 690.00h | 1 196.67i | 831.67i | 13.30ef | 5.00de | 0.07p | 0.01d | 0.22ij | 1a |
4 | 9.59b | 1 810.00e | 1 283.33f | 891.67f | 11.60l | 8.00bc | 0.19e | 0.01d | 0.54b | 1a |
5 | 8.72i | 290.67n | 206.67o | 132.67o | 9.70m | 4.00e | 0.17g | 0.01d | 0.40cd | 1a |
6 | 9.57bcd | 1 655.00i | 1 176.67j | 817.33j | 12.80ghi | 6.00cde | 0.16h | 0.02cd | 0.32ef | 1a |
7 | 9.56bcd | 1 711.33g | 1 213.33h | 845.00h | 13.07efg | 7.00cd | 0.08o | 0.02cd | 0.15k | 1a |
8 | 9.54bcd | 1 445.33k | 1 023.33l | 708.67l | 13.43e | 8.00bc | 0.27c | 0.02cd | 0.36de | 1a |
9 | 9.53cde | 1 767.00f | 1 256.67g | 874.33g | 13.40e | 7.00cd | 0.24d | 0.02cd | 0.30f | 1a |
10 | 9.52de | 1 862.33c | 1 320.00cd | 920.00cd | 12.37jk | 4.00e | 0.13j | 0.02cd | 0.28fgh | 1a |
11 | 9.66a | 1 334.00l | 947.00m | 650.00m | 12.57ij | 10.00b | 0.35b | 0.03bc | 0.42c | 1a |
12 | 9.59b | 1 830.33d | 1 296.67e | 903.67e | 12.53ij | 7.00cd | 0.15i | 0.03bc | 0.39cd | 1a |
13 | 9.57bcd | 1 884.00b | 1 336.67ab | 932.67b | 12.67hij | 7.00cd | 0.08o | 0.02cd | 0.25ghi | 1a |
14 | 9.58bc | 1 872.00bc | 1 330.00bc | 926.67bc | 12.53ij | 5.00de | 0.08n | 0.02cd | 0.29fg | 1a |
15 | 9.58bcd | 1 901.67a | 1 346.67a | 950.00a | 16.37b | 13.00a | 0.27c | 0.04ab | 0.39cd | 1a |
16 | 9.53cde | 1 862.33c | 1 323.33bcd | 926.00bc | 12.97fgh | 4.00e | 0.11k | 0.03bc | 0.18jk | 1a |
17 | 9.46fg | 1 839.00d | 1 310.00d | 913.00d | 13.00fgh | 8.00bc | 0.11m | 0.02cd | 0.23i | 1a |
18 | 9.44fgh | 1 858.67c | 1 320.00cd | 922.33c | 13.87d | 7.00cd | 0.11l | 0.03bc | 0.41c | 1a |
19 | 9.42gh | 1 615.00j | 1 150.00k | 799.33k | 14.83c | 6.00cde | 0.17g | 0.03bc | 0.24hi | 1a |
20 | 9.56bcd | 706.67m | 501.67n | 343.00n | 20.57a | 15.00a | 0.71a | 0.05a | 0.97a | 1a |
1 | Sun Fangdi, Zhao Yuanyuan, Gong Peng, et al. Remote sensing monitoring of dynamic land cover types: the ten-day temporal scale change of major lakes in China from 2000 to 2010[J]. Chinese Science Bulletin, 2014, 59(4/5): 397-411. |
孙芳蒂, 赵圆圆, 宫鹏, 等. 动态地表覆盖类型遥感监测: 中国主要湖泊面积2000—2010年间逐旬时间尺度消长[J]. 科学通报, 2014, 59(4/5): 397-411. | |
2 | Wang Sumin, Dou Hongshen. Lakes of China[M]. Beijing: Science Press, 1998: 398-399. |
王苏民, 窦鸿身. 中国湖泊志[M]. 北京: 科学出版社, 1998: 398-399. | |
3 | Azam F, Fenchel T, Field J G, et al. The ecological role of water-column microbes in the sea[J]. Marine Ecology Progress Series, 1983: 257-263. |
4 | Wu Qinglong, Jiang Helong. China lake microbiome project[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(3): 273-279. |
吴庆龙, 江和龙. 中国湖泊微生物组研究[J]. 中国科学院院刊, 2017, 32(3): 273-279. | |
5 | Ren Lijuan, He Dan, Xing Peng, et al. Research progress on bacterial diversity and ecological function in lake water[J]. Biodiversity Science, 2013, 21(4): 422-433. |
任丽娟, 何聃, 邢鹏, 等. 湖泊水体细菌多样性及其生态功能研究进展[J]. 生物多样性, 2013, 21(4): 422-433. | |
6 | Kou Wenbo, Huang Zhengyun, Zhang Jie, et al. Composition and structure of bacterial community in Poyang Lake: a case study of Songmen Mountain[J]. Acta Ecologica Sinica, 2015, 35(23): 7608-7614. |
寇文伯, 黄正云,张杰, 等. 鄱阳湖湖泊细菌群落组成及结构——以松门山为例[J]. 生态学报, 2015, 35(23): 7608-7614. | |
7 | Li Yuhua, Xu Qigong, Zhao Yue, et al. Analysis of bacterial community structure in different spatial distribution in Songhua Lake[J]. Journal of Agro-Environment Science, 2013, 32(4): 764-770. |
李玉华, 许其功, 赵越,等. 松花湖水体中不同空间分布的细菌群落结构分析[J].农业环境科学学报, 2013, 32(4): 764-770. | |
8 | Hiorns W D, Methe B A, Nierzwicki-Bauer S A, et al. Bacterial diversity in Adirondack mountain lakes as revealed by 16S rRNA gene sequences[J]. Applied and Environmental microbiology, 1997, 63(7): 2957-2960. |
9 | Liu Y, Yao T, Zhu L, et al. Bacterial diversity of freshwater alpine Lake Puma Yumco on the Tibetan Plateau[J]. Geomicrobiology Journal, 2009, 26(2): 131-145. |
10 | Zhang Jiang, Huang Jiafeng, Li Yanling, et al. Diversity of culturable bacteria and characteristics of extracellular active substances produced in alpine lakes of Southwest China[J]. Microbiology China, 2017, 44(9): 2043-2054. |
张姜, 黄嘉丰, 李艳玲, 等. 西南地区高山湖泊中可培养细菌多样性及其所产胞外活性物质的特性[J]. 微生物学通报, 2017, 44(9): 2043-2054. | |
11 | Yan Lijuan, Zheng Mianping, Qi Lujing. Surface area variations of lakes in the Tibetan Plateau and their influencing factors[J]. Science & Technology Review, 2017, 35(6): 83-88. |
闫立娟, 郑绵平, 齐路晶. 青藏高原湖泊湖面变迁及影响因素[J]. 科技导报, 2017, 35(6): 83-88]. | |
12 | Sun Dan. Microbial ecology in the Tibetan Plateau based on metagenomics[D]. Shanghai: Shanghai Ocean University, 2020. |
孙丹. 基于宏基因组学的青藏高原微生物生态研究[D]. 上海: 上海海洋大学, 2020 | |
13 | Liu Jinbo, Kong Weidong, Wang Junbo, et al. Quantity, community structure and driving factors of carbon sequestration microorganisms in Nam Co[J]. Acta Ecologica Sinica, 2019, 39(8): 2772-2783. |
刘金波, 孔维栋, 王君波, 等. 纳木错湖水体固碳微生物数量、群落结构及其驱动因子[J]. 生态学报, 2019, 39(8): 2772-2783. | |
14 | Wang Xin. Microbial diversity and adaptability of saltwater lakes at different elevations on the Tibetan Plateau[D]. Lanzhou :Lanzhou Jiaotong University, 2014. |
王鑫. 青藏高原不同海拔咸水湖微生物多样性及适应性特征[D]. 兰州: 兰州交通大学, 2014. | |
15 | Liu Xiaobo, Kang Shichang, Liu Yongqin, et al. Bacterial community characteristics in Nam Co and its comparison with alpine lakes on Tibetan plateau[J]. Journal of Glaciology and Geocryology, 2008, 30(6): 1041-1047. |
刘晓波, 康世昌, 刘勇勤, 等. 青藏高原纳木错湖细菌群落特征及其与高山湖泊的对比[J]. 冰川冻土, 2008, 30(6): 1041-1047. | |
16 | Pan Wenjuan, Lin Jiafu, Wang Xiaotao, et al. Isolation, identification and determination of antimicrobial activity of actinomycetes from lakes in Tibet[J]. Biotechnology Bulletin, 2020, 36(7): 97-103. |
潘文娟, 林家富, 王小桃,等. 西藏湖泊放线菌的分离鉴定及抗菌活性测定[J]. 生物技术通报, 2020, 36(7): 97-103. | |
17 | Zhang Hongguang, Li Lin, Zhao Yan, et al. Seasonal variation of culturable microorganisms in lake water from different altitudes of Tibetan Plateau[J]. Journal of Traditional Chinese Veterinary Medicine, 2013, 32(3): 49-55. |
张红光, 李琳, 赵燕, 等. 青藏高原不同海拔湖水中可培养微生物的季节性变化[J]. 中兽医医药杂志, 2013, 32(3): 49-55. | |
18 | Zhu Liping, Qiao Baojin, Yang Ruimin, et al. A new understanding of the changes in water quantity and water quality of lakes on the Qinghai-Tibet Plateau[J]. Chinese Journal of Nature, 2017, 39(3): 166-172. |
朱立平, 乔宝晋, 杨瑞敏, 等. 青藏高原湖泊水量与水质变化的新认知[J]. 自然杂志, 2017, 39(3): 166-172. | |
19 | Zhu Liping, Xie Manping, Wu Yanhong. Quantitative analysis of lake area change and its causes in Nam Co, Tibet from 1971 to 2004[J]. Chinese Science Bulletin, 2010, 55(18): 1789-1798. |
朱立平, 谢曼平, 吴艳红. 西藏纳木错1971—2004年湖泊面积变化及其原因的定量分析[J]. 科学通报, 2010, 55(18): 1789-1798. | |
20 | Zheng Yanyan, Guo Xiaofang, Hao Zhao, et al. Characteristics of culturable bacterial community in coastal water of Nam Co in spring[J]. Journal of Arid Land Resources and Environment, 2022, 36(3): 178-186. |
郑艳艳, 郭小芳, 郝兆, 等. 纳木措春季沿岸水体可培养细菌群落特征[J]. 干旱区资源与环境, 2022, 36(3): 178-186. | |
21 | Hao Zhao, Wang Yanhong, Zheng Yanyan, et al. Diversity of culturable yeasts in Yamzhog Yumco Lake[J]. Acta Microbiologica Sinica, 2021, 61(5): 1269-1286. |
郝兆, 王艳红, 郑艳艳, 等. 羊卓雍措水体可培养酵母菌多样性及其与理化因子相关性[J]. 微生物学报, 2021, 61(5): 1269-1286. | |
22 | Lane D J. 16S/23S rRNA sequencing[J]. Nucleic Acid Techniques in Bacterial Systematics, 1991: 115-175. |
23 | Barahona S, Yuivar Y, Socias G, et al. Identification and characterization of yeasts isolated from sedimentary rocks of Union Glacier at the Antarctica[J]. Extremophiles, 2016, 20(4): 479-491. |
24 | Wang Yongxia, Huo Qingqing, Li Yaping, et al. Diversity and denitrification characteristics of culturable aerobic denitrifying bacteria in Dianchi Lake[J]. Acta Microbiologica Sinica, 2018, 58(10): 1764-1775. |
王永霞, 霍晴晴, 李亚平, 等. 滇池可培养好氧反硝化细菌多样性及其脱氮特性[J]. 微生物学报, 2018, 58(10): 1764-1775. | |
25 | Zhang Yuxiang, Wei Jianping, Song Zihan, et al. Distribution of cold-tolerant bacteria and control of dominant bacteria in frozen chicken[J]. Modern Food Science and Technology, 2020, 36(3): 140-149. |
张宇翔, 魏建平, 宋子涵, 等. 冷冻鸡肉中耐冷菌的分布及对优势菌的控制[J]. 现代食品科技, 2020, 36(3): 140-149. | |
26 | Ni Yongqing, Gu Yanling, Shi Xuewei, et al. Screening and phylogeny of cryogenic strains producing protease from the bottom of the Tianshan No.1 Glacier[J]. Acta Microbiologica Sinica, 2013, 53(2): 164-172. |
倪永清, 顾燕玲, 史学伟, 等. 天山一号冰川底部沉积层产蛋白酶耐低温菌株的筛选及其系统发育[J]. 微生物学报, 2013, 53(2): 164-172. | |
27 | Wu Haihong, Sun Zhilan, Zhang Xinxiao, et al. Analysis of bacterial diversity of chilled green shrimps under different packing methods[J]. Food Science, 2019, 40(3): 251-258. |
吴海虹, 孙芝兰, 张新笑, 等. 不同包装方式下冷鲜青虾的菌群多样性分析[J]. 食品科学, 2019, 40(3): 251-258. | |
28 | Shen Ping, Li Xueying, Yang Xianshi, et al. Changes of bacterial composition and identification of dominant spoilage bacteria in squid during cryopreservation[J]. Modern Food Science and Technology, 2015, 31(6): 236-242. |
沈萍, 李学英, 杨宪时, 等. 低温贮藏过程中鱿鱼细菌组成的变化及优势腐败菌鉴定[J]. 现代食品科技, 2015, 31(6): 236-242. | |
29 | Xie Lidan, Li Leilei, Wang Suying, et al. Isolation and identification of specific putrid bacteria from cryopreserved Penaeus vannaei and analysis of putrid capacity[J]. Food and Fermentation Industries, 2016, 42(3): 67-72. |
谢丽丹, 李蕾蕾, 王素英, 等. 低温贮藏南美白对虾特定腐败菌的分离鉴定及腐败能力分析[J]. 食品与发酵工业, 2016, 42(3): 67-72. | |
30 | Zhang Yinghua, Lei Yuting, Huo Guicheng. Research status of small molecule cold shock proteins in bacteria[J]. China Dairy Industry, 2008(1): 48-51. |
张英华, 雷雨婷, 霍贵成. 细菌中小分子冷休克蛋白的研究现状[J]. 中国乳品工业, 2008(1): 48-51. | |
31 | Zhang M M, Chen W M, Chen B Y, et al. Comparative study on characteristics of azo dye decolorization by indigenous decolorizers[J]. Bioresource Technology, 2010, 101(8): 2651-2656. |
32 | Fernández Zenoff V, Siñeriz F, Farias M E. Diverse responses to UV-B radiation and repair mechanisms of bacteria isolated from high-altitude aquatic environments[J]. Applied and Environmental Microbiology, 2006, 72(12): 7857-7863. |
33 | Zhang Ying, Chen Yagang, Yang Qing. Research progress of Acinetobacter infection and drug resistance mechanism[J]. International Journal of Epidemiology and Infectious Disease, 2005, 32(2): 109-112. |
张樱, 陈亚岗, 杨青. 不动杆菌感染及耐药机制的研究进展[J]. 国际流行病学传染病学杂志, 2005, 32(2): 109-112. | |
34 | Straganz G D, Glieder A, Brecker L, et al. Acetylacetone-cleaving enzyme Dke1: a novel CC-bond-cleaving enzyme from Acinetobacter johnsonii[J]. Biochemical Journal, 2003, 369(3): 573-581. |
35 | Straganz G D, Nidetzky B. Reaction coordinate analysis for β-Diketone cleavage by the non-heme Fe2+-dependent dioxygenase Dke1[J]. Journal of the American Chemical Society, 2005, 127(35): 12306-12314. |
36 | Wang H K, Shao J, Wei Y J, et al. A novel low-temperature alkaline lipase from Acinetobacter johnsonii LP28 suitable for detergent formulation[J]. Food Technology and Biotechnology, 2011, 49(1): 96-102. |
37 | Lee M, Woo S G, Ten L N. Characterization of novel diesel-degrading strains Acinetobacter haemolyticus MJ01 and Acinetobacter johnsonii MJ4 isolated from oil-contaminated soil[J]. World Journal of Microbiology and Biotechnology, 2012, 28(5): 2057-2067. |
38 | Li M T, Liu J H, Zhao S J, et al. The characteristics of nitrate removal by the psychrotolerant denitrifying bacterium Acinetobacter johnonii DBP-3, isolated from a low-temperature eutrophic body of water[J]. Journal of Environmental Science and Health, Part B, 2013, 48(10): 885-892. |
39 | Zhao J, Zhao X, Chao L, et al. Diversity change of microbial communities responding to zinc and arsenic pollution in a river of northeastern China[J]. Journal of Zhejiang University-SCIENCE B, 2014, 15(7): 670-680. |
40 | Phuong K, Kakii K, Nikata T. Intergeneric coaggregation of non-flocculating Acinetobacter spp. isolates with other sludge-constituting bacteria[J]. Journal of Bioscience and Bioengineering, 2009, 107(4): 394-400. |
41 | Zhang Yang, Wang Xiujie, Wang Weiqi, et al. Study on partial denitrification characteristics and kinetics of Acinetobacter johnsonii [J]. China Environmental Science, 2019, 39(10): 4369-4376. |
张阳, 王秀杰, 王维奇, 等. 一株Acinetobacter johnsonii的部分反硝化特性及动力学研究[J]. 中国环境科学, 2019, 39(10): 4369-4376. | |
42 | Zhang Chuanli, Sun Huigang, Cui Jue, et al. Screening of high lipase producing strain and analysis of its enzymatic properties[J]. Food Science and Technology, 2019, 44(11): 30-35. |
张传丽, 孙会刚, 崔珏, 等. 高产脂肪酶菌株的筛选及其酶学性质分析[J]. 食品科技, 2019, 44(11): 30-35. | |
43 | Xue D, Zeng X, Lin D, et al. Thermostable ethanol tolerant xylanase from a cold-adapted marine species Acinetobacter johnsonii [J]. Chinese Journal of Chemical Engineering, 2019, 27(5): 1166-1170. |
44 | Liu X, Yao T, Kang S, et al. Bacterial community of the largest oligosaline lake, Namco on the Tibetan Plateau[J]. Geomicrobiology Journal, 2010, 27(8): 669-682. |
45 | Wu Q L, Zwart G, Schauer M, et al. Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China[J]. Applied and Environmental Microbiology, 2006, 72(8): 5478-5485. |
46 | Liu K, Liu Y, Jiao N, et al. Bacterial community composition and diversity in Kalakuli, an alpine glacial-fed lake in Muztagh Ata of the westernmost Tibetan Plateau[J]. FEMS Microbiology Ecology, 2017, 93(7): 1-9. |
47 | Song W, Sun C. Diversity and distribution of bacteria and archaea in Tuosu Lake in Qaidam Basin[J]. Cellular and Molecular Biology, 2020, 66(6): 86-92. |
48 | Liu Y, Priscu J C, Yao T, et al. A comparison of pelagic, littoral, and riverine bacterial assemblages in Lake Bangongco, Tibetan Plateau[J]. FEMS Microbiology Ecology, 2014, 89(2): 211-221. |
49 | Wang X, Liu J X, Chai B F, et al. Spatio-temporal patterns of microbial communities and their driving mechanisms in Subalpine Lakes, Ningwu, Shanxi[J]. Environmental Science, 2019, 40(7): 3285-3294. |
50 | Xia P, Yan D, Sun R, et al. Community composition and correlations between bacteria and algae within epiphytic biofilms on submerged macrophytes in a plateau lake, southwest China[J]. Science of the Total Environment, 2020, 727: 138398. |
51 | Liu K, Liu Y, Han B P, et al. Bacterial community changes in a glacial-fed Tibetan lake are correlated with glacial melting[J]. Science of the Total Environment, 2019, 651: 2059-2067. |
52 | Guo Xiaofang, De Ji, Long Qiwei, et al. Spatial dynamics of yeast community and its relationship with environmental factors in Lhalu Wetland, Tibet[J]. Acta Microbiologica Sinica, 2018, 58(7): 1167-1181. |
郭小芳, 德吉, 龙琦炜, 等. 西藏拉鲁湿地水体酵母菌多样性及其与理化因子相关性[J]. 微生物学报, 2018, 58(7): 1167-1181. |
[1] | 王逸凡, 高晶, 胡迈, 姚檀栋, 牛晓伟, 赵爱斌, 申子恒. 青藏高原大气CH4源汇及其浓度时空变化特征研究进展[J]. 冰川冻土, 2023, 45(1): 1-17. |
[2] | 张文旭, 王根绪, 胡兆永. 三种蒸散发测算方法的比较 ——以青藏高原风火山地区为例[J]. 冰川冻土, 2023, 45(1): 130-139. |
[3] | 张愉萱, 王宁练, 武小波, 杨雪雯, 李瑶, 方振祥. 青藏高原东南和西南部冬季积雪化学组成研究[J]. 冰川冻土, 2023, 45(1): 18-30. |
[4] | 孟华旦尚, 薛曌, 郭小芳, 德吉. 西藏纳木错沿岸表层水体浮游细菌群落结构及生态功能预测[J]. 冰川冻土, 2023, 45(1): 254-266. |
[5] | 兰爱玉, 林战举, 范星文, 姚苗苗. 坡向对青藏高原土壤环境及植被生长影响的实验研究[J]. 冰川冻土, 2023, 45(1): 42-53. |
[6] | 薛伟, 周毓彦, 刘建伟, 鲁帆, 侯保灯, 胡莹莹, 肖伟华. 基于SHAW模型的青藏高原季节冻土区土壤温湿度模拟与评估[J]. 冰川冻土, 2023, 45(1): 54-66. |
[7] | 文洪, 巫锡勇, 赵思远, 边瑞, 周桂宇, 孟少伟, 孙春卫. 基于机器学习法的青藏高原沙鲁里山系中段雪崩易发性评价研究[J]. 冰川冻土, 2022, 44(6): 1694-1706. |
[8] | 李诺, 韩其飞, 马英, 黄晓东. 青藏高原MODIS逐日无云积雪范围产品精度验证[J]. 冰川冻土, 2022, 44(6): 1740-1747. |
[9] | 刘金科, 姚济敏, 谷良雷, 李韧, 吴晓东, 吴通华, 谢昌卫, 邹德富, 乔永平, 胡国杰, 肖瑶, 史健宗. 青藏高原多年冻土区地表能量收支过程及其对活动层影响的初步分析[J]. 冰川冻土, 2022, 44(6): 1773-1783. |
[10] | 王习敏, 黄荣刚, 徐志达, 焦志平, 江利明. 基于深度学习和高分遥感影像的青藏高原东部融冻泥流阶地提取研究[J]. 冰川冻土, 2022, 44(5): 1419-1428. |
[11] | 郑锦文, 左志燕, 蔺邹兴, 肖栋. 巴伦支-喀拉海海温和青藏高原冬季地表气温的年代际联系[J]. 冰川冻土, 2022, 44(5): 1513-1522. |
[12] | 谢梅珍, 赵林, 吴晓东, 周华云, 岳广阳. 青藏高原多年冻土区两种高寒草地生态系统土壤氮季节变化及其与环境因子的关系[J]. 冰川冻土, 2022, 44(5): 1631-1639. |
[13] | 杨舒然, 杨玮琳, 韩业松, 杨彦敏, 李梦真, 崔之久, 刘耕年. 四川康定折多山末次冰盛期古冰川重建及其气候意义[J]. 冰川冻土, 2022, 44(4): 1119-1129. |
[14] | 伍永秋, 王立辉, 杜世松, 李静芸, 申玉龙. 青藏高原典型地区沉积物地球化学特征与矿物组成的粒度效应[J]. 冰川冻土, 2022, 44(4): 1140-1149. |
[15] | 陈军, 刘延昭, 曹立国, 胡建茹, 刘水林. 青藏高原湖泊变化遥感监测及水量平衡定量估算研究进展[J]. 冰川冻土, 2022, 44(4): 1203-1215. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000