冰川冻土, 2022, 44(4): 1188-1202 doi: 10.7522/j.issn.1000-0240.2022.0109

冰冻圈与全球变化

若尔盖黄河唐克段河岸沉积序列测年及地表过程变化

周家和,1, 周亚利,1, 黄春长1, 查小春1, 庞奖励1, 张玉柱2, 尚瑞清1

1.陕西师范大学 地理科学与旅游学院,陕西 西安 710119

2.西北大学 城市与环境学院,陕西 西安 710127

Chronology of the sedimentary sequence and the changes in surface processes along the Tangke reach of the Yellow River in the Zoige Basin

ZHOU Jiahe,1, ZHOU Yali,1, HUANG Chunchang1, ZHA Xiaochun1, PANG Jiangli1, ZHANG Yuzhu2, SHANG Ruiqing1

1.School of Geographical Sciences and Tourism,Shaanxi Normal University,Xi’an 710119,China

2.College of Urban and Environmental Sciences,Northwest University,Xi’an 710127,China

通讯作者: 周亚利,副教授,主要从事光释光年代学和气候环境演化研究. E-mail: ylzhou109@163.com

收稿日期: 2022-06-15   修回日期: 2022-08-12  

基金资助: 国家自然科学基金项目.  41971116.  41801060.  42071112

Received: 2022-06-15   Revised: 2022-08-12  

作者简介 About authors

周家和,硕士研究生,主要从事光释光测年研究.E-mail:jhzhou678@163.com , E-mail:jhzhou678@163.com

摘要

通过对若尔盖盆地进行野外考察,在盆地中部黄河唐克段右岸发现了包含深湖相的河岸沉积物,进行了细致的地层观测和系统年代学样品采集。在实验室利用光释光和AMS14C测年技术建立了年代框架,并结合各个层次的地层沉积相宏观特征和理化性质,分析探讨了若尔盖盆地内部从末次冰期古湖消亡以来的环境和地表过程变化规律。研究结果表明:古黄河在37 ka沿着玛曲断陷谷地溯源侵蚀,沟通了若尔盖古湖水系,盆地内部在30.9 ka之前为深湖环境,稳定地沉积了蓝灰色湖相淤泥层。30.9 ka之后,黄河贯穿若尔盖湖盆内部,古湖水外泄消失,原有的古湖水系转变成为黄河源水系。黄河从湖盆上游远距离搬运携带来的浊黄橙色泥沙大量沉积,覆盖了古湖相沉积层,湖盆内部风沙作用盛行。在末次冰盛期(Last Glacial Maximum, LGM),盆地内部松散沉积物普遍地受到冰缘冻融作用的改造,形成了冻融褶皱现象。到了14.6~12.5 ka,响应B/A(Bølling-Allerød)时期的温暖气候,盆地周边山地冰川消融,冰融水汇入盆地,古湖盆底部各种浅洼地形成了大小不等的浅湖,沉积了滨浅湖相的沙层。在12.5~11.7 ka,对应于全球性新仙女木(Younger Dryas,YD)事件,盆地气候再次变冷,转变为冰缘冻土环境,盆地内部滨浅湖相的沙层受到冻融作用和古地震扰动,形成复式褶皱现象。进入全新世,在11.7~4.8 ka气候逐渐变得温暖湿润,古湖盆底部浅洼地积水成为淤泥质沼泽环境,在全新世中后期4.8~1.8 ka则转变成为沼泽草甸环境,在1.8 ka之后,盆地内沼泽面积收缩,风沙活动盛行,河岸台地的近源沙尘暴沉积物经过成壤改造形成亚高山草甸黑土类现代土壤。

关键词: 若尔盖盆地 ; 地层序列 ; 冻融褶皱 ; 震积层 ; 光释光测年

Abstract

The research in this paper mainly focuses on the banks of the Tangke section of the Yellow River in the Zoige Basin, and studies the natural sedimentary profiles directly exposed by the lower cut of the Yellow River. The purpose is to establish the stratigraphic sequence and age frame of soil sediments, and to deeply explore the upstream erosion of the Yellow River into the interior of the Zoige Basin. The characteristics of regional surface process changes during the process provide chronological and stratigraphic evidence for the Yellow River running through the Zoige Basin. Through field investigation of the Zoige Basin, a sequence of riparian soil sediments containing deep lacustrine sediments was found on the right bank of the Tangke section of the Yellow River in the middle of the basin, and in-depth observations and systematic sampling were carried out. In the laboratory, the chronological framework was established by using the optical luminescence and AMS14C dating techniques. Combined with the macroscopic characteristics and physicochemical properties of soil sedimentary facies at various levels, the environment and surface processes were thoroughly analyzed and discussed in the Zoige Basin since the demise of the last glacial paleolake. The research results show that the ancient Yellow River eroded headward along the Maqu rift valley at 37 ka, which connected the Zoige ancient lake water system, while the interior of the basin was a deep lake environment before 30.9 ka, and a blue-gray lacustrine silt layer was deposited stably. After 30.9 ka, the Yellow River penetrated through the interior of the Zoige Lake Basin, the ancient lake water leaked out and disappeared, and the original ancient lake water system was completely transformed into the Yellow River source water system. A large amount of turbid yellow-orange sediment carried by the Yellow River from the upper reaches of the lake basin was deposited in large quantities, covering the paleolacustrine sediment, and aeolian sand action prevailed in the lake basin. During the Last Glacial Maximum (LGM), the loose sediments in the basin were generally transformed by the freezing and thawing of the periglacial environment, forming freeze-thaw folds. From 14.6 to 12.5 ka, in response to the warm climate in the Bølling-Allerød (B/A) period, the mountain glaciers around the basin melted and melted water flowed into the basin. Various shallow depressions at the bottom of the ancient lake basin formed shallow lakes of different sizes. Sand layers of littoral-shallow lacustrine facies were deposited. From 12.5 to 11.7 ka, corresponding to the global Younger Dryas (YD) event, the climate became cold again and transformed into a permafrost environment in the basin. Paleo-earthquake disturbances have formed complex double-fold folds. In the Holocene, the climate gradually became warm and humid from 11.7 to 4.8 ka, and the shallow depression at the bottom of the ancient lake basin became a silty swamp environment, and a muddy soil layer was developed. In the middle and late Holocene 4.8~1.8 ka, it transformed into a swamp meadow environment and developed swamp meadow black soil paleosols. After 1.8 ka, the marshes in the basin shrank, aeolian sand activities prevailed, the floodplain sand was transformed into sand dunes by wind, and the near-source sandstorm sediments in the riparian highlands were transformed into subalpine meadow black soil modern soils by pedogenesis.

Keywords: Zoige Basin ; stratigraphic sequence ; freeze-thaw folds ; seismogenic deposites ; OSL dating

PDF (6518KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

周家和, 周亚利, 黄春长, 查小春, 庞奖励, 张玉柱, 尚瑞清. 若尔盖黄河唐克段河岸沉积序列测年及地表过程变化[J]. 冰川冻土, 2022, 44(4): 1188-1202 doi:10.7522/j.issn.1000-0240.2022.0109

ZHOU Jiahe, ZHOU Yali, HUANG Chunchang, ZHA Xiaochun, PANG Jiangli, ZHANG Yuzhu, SHANG Ruiqing. Chronology of the sedimentary sequence and the changes in surface processes along the Tangke reach of the Yellow River in the Zoige Basin[J]. Journal of Glaciology and Geocryology, 2022, 44(4): 1188-1202 doi:10.7522/j.issn.1000-0240.2022.0109

0 引言

若尔盖盆地位于甘南黄河上游段,地处青藏高原东北缘,是东亚季风、西南季风与西风带交互影响的地带,自然环境脆弱,对气候变化具有敏感性和独特性1。第四纪时期盆地经历了若尔盖大湖-湖泊消亡-黄河贯通等重大地貌水文事件,这些事件是开展青藏高原构造隆升及其环境效应研究的重要的切入点,是认识新生代亚洲地区重大构造和古气候水文事件相互作用的纽带。

若尔盖盆地古湖消亡及黄河贯通的时间和动力机制争议较大。盆地北部沉降中心深钻孔岩芯RM和RH孔中发现古湖相沉积淤泥层顶界的14C年龄为21.6 ka BP和37.6 ka BP,并认为黄河袭夺古湖事件发生在38~35 ka2-4。黄河辖曼镇-索克藏寺河岸古河漫滩相沉积层出土的披毛犀、原始牛、马动物化石的测年结果为22.6 ka左右,并认为此时盆地脱离湖泊环境5-7,黄河贯通盆地。利用盆地内部的泥炭层沉积重建植被与气候演化过程,发现古湖相淤泥沉积向沼泽泥炭转变发生在10.3 ka与12.1 ka或者12.6 ka,故而认为黄河贯通发生在早全新世8-9。这些研究成果多集中在盆地中央湿地沼泽、黑河、白河沿岸,有可能受区域性差异性构造运动和地形、环境与地表过程和沉积相的影响,导致结论各不相同。而对黄河沿岸直接出露,能够真正反映黄河和古湖变迁历史的沉积地层研究较少。本课题组将通过对若尔盖盆地内部黄河两岸直接出露的土壤沉积物剖面的研究,为解决这些关键性问题提供可靠的第一手材料和直接证据。

本课题组前期在玛曲-若尔盖沿黄河两岸开展了广泛细致的野外考察和研究,从古洪水水文学、沉积学和年代学角度出发,在若干地点提供对天然剖面的观测研究,确定了晚更新世末期以来的土壤沉积物地层序列及年代框架,并准确鉴别出黄河古洪水泛滥沉积物及其发生年代和成因机制。在黄河玛曲-欧拉秀玛河段发现典型的古洪水沉积物,光释光测年结果显示形成于14.9~12.8 ka、13.5~12.9 ka和11.1~9.8 ka左右。认为在B/A(Bølling-Allerød)暖期气候温暖湿润的气候背景下,盆地周边高山地带冰川融化及降水量的增加使黄河发生了多次大规模的古洪水事件,从而形成洪水泛滥沉积层10-13。这些研究点多位于阿尼玛卿山和西倾山之间的断陷谷地地带,本文的研究主要集中在若尔盖盆地内部黄河唐克段河岸,对黄河下切直接出露的天然沉积剖面进行研究,建立土壤沉积物地层序列和年代框架,深入探讨黄河溯源侵蚀进入若尔盖盆地内部的过程之中区域性地表过程变化特点,为黄河贯通若尔盖盆地提供年代学和地层学证据。

1 研究区概况

青藏高原东部的若尔盖盆地,是受东昆仑大断裂东端新构造运动控制形成的相对沉降区域,西起阿尼玛卿山,东抵岷山,北依西倾山,南靠邛崃山,面积约1.96×104 km2,中心部分海拔3 400~3 450 m,周边山体海拔超过4 000 m,为典型的四面环山的断陷盆地。盆地基底岩层主要为三叠系地层,以二叠系-三叠系砂岩、板岩、灰岩为主,在一些地段有白垩纪角砾岩和第三系红色黏土层出露14-15。总体地势西高东低,南高北低,内部地形起伏,具有基岩丘陵,也有沉积洼地,分布有第四系河湖相沉积物。黄河从盆地西部的果洛山汇入盆地向东南流去,沿途接纳白河、黑河等水系,在唐克附近黄河转向盆地西北流去,形成巨大“U”形弯曲,称为“黄河第一湾”,最后从玛曲县城南侧紧贴着阿米欧拉山麓流出盆地,总流程约110 km。黄河河床类型在不同河段呈现出网状水流、自由曲流、辫状水流及峡谷式深切曲流等,沿岸有河流阶地、山麓台地、冰水-洪积扇台地分布,高度在8~30 m之间不等。

若尔盖盆位于季风区和青藏高原交汇地带,受东亚东南季风和东亚西南季风影响,降水较为丰富,年降水量648.5 mm,5—9月降水量占全年77%以上;年平均气温1.1 ℃,1月平均温度-9.4 ℃,7月平均温度10.8 ℃;夏秋季气温高而短暂,春、冬季气温低且漫长,严寒湿润霜冻期长,四季变化明显;为高原寒温带湿润季风气候16-17。在盆地内部地形低洼地带发育泥炭,总面积达4.6×103 km2,泥炭平均深度2~3 m,最深可达9~10 m918。周边山体普遍发育现代冰川和冻土,中更新世以来发生2~3期冰川作用,可见有冰斗、刃脊、角峰等冰川地貌19,季节性温度上升,高山冰雪融化会补给黄河及其支流。若尔盖盆地年平均风速为2.23~2.37 m·s-1,冬春季风速较大,河漫滩相泥沙及古湖泥沙被风力再次搬运堆积形成沙丘,多以斑状、点状分布20。植被类型主要为亚高山草甸和沼泽草甸,土壤为富含有机质的亚高山草甸黑土和沼泽草甸黑土。

2 剖面特征与样品采集

我们在若尔盖盆地内部黄河第一弯白河汇入口上游黄河两岸进行了详细的调查研究,发现在唐克河段沃曲汇入口与唐克渡口之间,黄河右岸的河岸为松散沉积物构成的陡坎,高度在8~10 m之间。其中沃曲东剖面处于黄河故道与阿尔则乔干沼泽草甸之间由松散沉积物构成的低缓平梁状地带,海拔高程3 440 m。野外调查结合大比例尺卫星影像图观测,可知黄河曾长期在其左岸3~7 km范围内反复裁弯取直,产生众多弯曲的废弃河湾与沼泽草甸,后期河道整体向右岸迁移,河岸不断坍塌后退,形成高度10 m左右的河岸,暴露出包含古湖相淤泥层的松散沉积物序列(图1)。经过野外详细观察测量和沉积物鉴别,对沃曲东剖面(WQD)进行了地层划分和土壤沉积物性质的描述(表1图2)。在WQD剖面最上部0~0.8 m发育现代草甸土壤层(MS);0.8~1.4 m发育沼泽草甸古土壤层(S0);1.4~3.9 m发育泥沼土层(Mud);3.9~9.9 m为沙层,其中3.9~5.0 m为褶皱沙层(Folded-S),5.0~8.0 m为滨浅湖沙层(Lake-S),8.0~9.9 m为褶皱河漫滩-风沙层(Folded-S);9.9 m以下为深湖相淤泥层(Lake-mud)。

图1

图1   研究区概况

Fig. 1   Overview of the study area: Zoige Basin and the first bend of the Yellow River (a); satellite image of the Tangke reach of the Yellow River and the study Woqudong site (WQD) (b); photo of the WQD profile (c)


表1   若尔盖唐克沃曲东黄河岸剖面(WQD)地层划分与描述

Table 1  Stratigraphic division and pedo-sediment description in the WQD profile on the Yellow River bank along the Tangke reach in the Zoige Basin

土壤地层层位深度/m土壤与沉积物性质描述
现代草甸土壤层(MS)0~0.80亚高山草甸黑土,灰棕色(7.5YR5/2),湿润时为黑棕色(7.5YR2/1),细沙质-粉沙质地,团粒构造,疏松多孔,含有密集的植物根系
沼泽草甸古土壤层(S00.80~1.40亚高山沼泽草甸黑土,棕灰色(7.5YR5/1),黏土质-粉沙质地,团粒-团块构造,富含有机质,底部含有较多的锈黄色斑,在长期暴露的剖面,可溶盐积累,故而干燥时比较坚硬。其1.05~1.10 m深度14C校正年龄为(1.78±0.05) cal ka BP
泥沼土层(Mud)1.40~3.90浊黄橙色(10YR7/3),粉沙质地,块状构造,无层理,多植物根孔,多有浅育化作用形成的灰白、灰绿、锈黄色斑
褶皱沙层(Folded-S)3.90~5.00浊黄橙色(10YR7/3),分选良好的细沙,疏松,多锈黄色浸染,常见有显著的冻融与古地震扰动形成复杂的复式褶皱现象
滨浅湖沙层(Lake-S)5.00~8.00浊黄橙色(10YR7/3),分选良好的细沙,疏松,具有整齐的薄层水平-波状层理,多锈黄色浸染
褶皱河漫滩-风沙层(Folded-S)8.00~9.90浊黄橙色(10YR7/3),中粗沙,层理不规则,多锈黄色浸染,常见有显著的冻融褶皱现象
深湖相淤泥层(Lake-mud)9.90~?蓝灰色(5B6/1),粉沙-黏土质地,均匀致密,无层理,有浓烈的H2S臭味,含有植物残体分解形成的不规则锈黄色斑,属于若尔盖古湖稳定的深水沉积物,未见底。其9.95~10.00 m深度14C校正年龄为(30.98±0.13) cal ka BP

新窗口打开| 下载CSV


图2

图2   若尔盖唐克黄河岸沃曲东剖面(WQD)地层划分和土壤沉积物性质

Fig. 2   Stratigraphic division and soil sediment properties of WQD on the Yellow River Bank along the Tangke reach of Zoige Basin: soil stratum profile (a); the freeze-thawed folds in the flood plain sand (b); the earthquake disturbed freeze-thawed folds in the shallow lake deposit(c)


根据该剖面土壤地层沉积特征系统地进行了样品采集,在表土层中部(0.35~0.40 m)、古土壤中部(1.05~1.1 m)、泥沼土中部(2.55~2.60 m)、褶皱沙层顶界(3.95~4.00 m)、滨浅湖沙层中上部(5.85~5.90 m)、褶皱河漫滩-风沙层中部(8.85~8.90 m)、深湖相淤泥顶界(9.95~10.00 m)及顶部(10.45~10.50 m)各采集沉积学样品一个,共7个。在沼泽草甸古土壤底界(1.35~1.40 m),褶皱沙层顶界(3.95~4.00 m),褶皱河漫滩-风沙层顶界(8.00~8.05 m)、底部(9.65~9.70 m)、底界(9.80~9.85 m),各采集光释光(OSL)样品一个,依次命名为WQD-A-1、WQD-A-2、WQD-A-3、WQD-A-4、WQD-A-5。在古土壤顶界(0.90~0.95 m)、深湖相淤泥顶界(9.95~10.00 m)采集两个AMS14C样品。

3 研究方法

3.1 光释光测年

光释光样品的年龄测试在陕西师范大学释光断代实验室完成,测试粒径为63~90 μm,样片直径2 mm,测试仪器为Riso-TL/OSL DA20,其光电倍增管为EMI9235QB15,激发光源包括红外光源[(880±80) nm,40 mW·cm-2]、蓝光光源[(470±30) nm,50 mW·cm-2],滤光片为Hoya U-340,β辐射源90Sr/90Y源,剂量率为0.122683 Gy·s-1

光释光样品的环境剂量率主要由放射性元素U、Th、K含量、含水量以及宇宙射线的贡献决定。U、Th含量在西安地质调查中心采用全谱直读等离子光谱仪(ICP-OES)测得、K含量采用电感耦合等离子体质谱仪(ICP-MS)测得。样品含水量在实测基础上,根据沉积相特征,采用区域性土壤沉积物含水量校正,误差为±3%。宇宙射线的贡献由采样点的经度、纬度、海拔高度、和样品埋藏深度等决定21。通过相关公式计算得出样品的环境剂量率22

3.1.1 等效剂量(De)测定

光释光测年技术已广泛应用于第四纪沉积物的测年工作中,其基本原理为最后一次埋藏年代=等效剂量/环境剂量率23

光释光样品等效剂量(De)采用单片再生剂量法(SAR)测定24。等效剂量(De)测试需要选择合适的测试条件,根据样品沉积相特征,选择代表性WQD-A-1、2、5号样品进行预热坪区实验。在180~300 ℃区间内,以20 ℃为间隔,Cutheat比预热温度(Preheat)低40 ℃,每个温度点测试6个样片。预热坪实验表明(如图3),WQD-A-1、2、5分别在180~300 ℃、180~280 ℃、180~300 ℃温度区间内,等效剂量(De)不随温度升高改变,出现一个“坪区”,样品的温度“坪区”宽。

图3

图3   若尔盖唐克黄河岸沃曲东(WQD)剖面样品预热坪实验和剂量恢复实验及循环比

Fig. 3   Preheating plateau experiments and dose recovery experiments and recycling ratio of samples WQD profile on the Yellow River bank along the Tangke reach of the Zoige Basin


为了检验以上温度区间的可靠性,需要进行剂量恢复实验。先将WQD-A-1、2、5样品自然释光信号彻底晒褪,然后分别辐照接近样品等效剂量(De)的人工剂量(11.90 Gy、26.73 Gy、38.15 Gy)。WQD-A-1、2、5样品在预热温度260 ℃、220 ℃、260 ℃下得到的恢复剂量为12.04 Gy、26.48 Gy、38.16 Gy与人工剂量最接近,人工剂量与恢复剂量的比值(恢复系数)分别为0.98、1.01、1.00,介于0.9~1.1之间(图3)。最终WQD-A-1、3、4、5以预热温度260 ℃和割热温度220 ℃作为实验测试条件,WQD-A-2以预热温度220 ℃和割热温度180 ℃作为等效剂量(De)测试条件。循环比在测试条件下介于0.9~1.1之间(图3),说明感量变化也得到较好校正24

3.1.2 光释光信号特征和晒褪程度分析

WQD-A-1、2、3、4、5样品的光释光晒褪曲线均在2 s左右快速晒褪至本底值,样品光释光信号以快速组分为主,采用前背景法确定释光信号的积分区间,每个通道0.16 s,利用前1~5通道的光释光信号值减去随后的6~10通道的光释光信号值25-26。光释光生长曲线拟合良好,释光信号未达到饱和,通过内插法获取每个样片的等效剂量(De)。

图4

图4   若尔盖唐克黄河岸沃曲东(WQD)剖面部分光释光样品晒褪和生长曲线

Fig. 4   Decay and growth curves of the samples from the WQD profile on the Yellow River bank along the Tangke reach of the Zoige Basin


样品释光信号在最后一次被埋藏前被完全晒褪或者达到可忽略的水平是获得可靠、准确的年代结果的必要前提27。对WQD-A-1、2、3、4、5光释光样品等效剂量(De)进行统计分析,如图5所示。光释光样品的等效剂量(De)分布集中,说明样品在最后一次埋藏前释光信号充分晒褪28。样品的等效剂量(De)集中,WQD-A-1、2、3、4、5分别有66.7%、90%、75%、84.6%、75%的测片集中在2σ置信区间内。前人的研究显示,晒褪彻底的样品,其等效剂量(De)与感量变化校正后的光释光信号值的相关性弱29。WQD-A-1、2、3、4、5样品的等效剂量(De)与感量变化校正的光释光信号值的相关性只有4.08%、7.90%、4.02%、0.44%、14.45%,两者之间的相关性较低,即样品在最后一次埋藏前信号晒褪彻底,保证了数据结果的准确可靠。

图5

图5   若尔盖唐克黄河岸沃曲东(WQD)剖面光释光样品等效剂量(De)分布图

Fig. 5   Equivalent dose (De) distribution of OSL samples from the WQD profile on the Yellow River bank along the Tangke reach of the Zoige Basin


3.2 AMS14C测年

沼泽草甸古土壤顶界(0.90~0.95 m)、深湖相淤泥顶界(9.95~10.00 m)样品的AMS14C样年龄由南京大学地理与海洋学院AMS实验室完成,经由树轮校正曲线校正后30,得到日历年龄。

3.3 粒度测试

粒度测试仪器为英国马尔文仪器公司产的Mastersizer-2000激光粒度仪,测试粒径范围0.02~2 000 μm。先用镊子挑出样品中的树根等杂质;然后根据样品沉积特征称取0.4~0.9 g;再加入足量的10%的盐酸和双氧水彻底去除碳酸盐和有机质;洗至中性;再加入5 mL 0.05 mol·L-1的六偏磷酸钠,用超声波震荡使其充分分散后上机测试。遮光度保持8%~12%左右,重复测试三次取其平均值。

4 实验结果

4.1 年代结果与地层年代框架

利用平均年龄模型(average age model, AAM)、中值年龄模型(central age model, CAM)、最小值年龄模型(minimum age model, MAM)31三种方法,分别得到样品的三种年龄模型等效剂量(De)。结果如表2所示,三种模型计算出的等效剂量(De)接近,说明样品晒褪彻底。样品的最终等效剂量(De)采用均值年龄模型(WAM)的结果,利用DRACv1.2年龄软件32得出样品的光释光年龄。

表2   若尔盖唐克黄河岸沃曲东(WQD)剖面光释光测年数据表

Table 2  OSL age in the WQD profile on the Yellow River bank along the Tangke reach of the Zoige Basin

样品编号深度/m粒径/μm含水量/%U/(μg·g-1Th/(μg·g-1K/%环境剂量率/(Gy·ka-1MAM等效剂量/GyCAM等效剂量/GyAAM等效剂量/GyOSL年龄(WAM)/ka
WQD-A-11.35~1.4063~9022±32.06±0.312.60±0.72.15±0.043.11±0.0813.38±1.2915.02±0.8914.96±0.234.81±0.15
WQD-A-23.95~4.0063~9023±31.68±0.38.67±0.61.69±0.042.27±0.0726.77±0.4926.81±0.6426.63±1.2811.75±0.43
WQD-A-38.00~8.0563~9023±31.78±0.39.21±0.61.81±0.042.41±0.0735.07±2.0335.11±1.0635.38±0.7214.66±0.54
WQD-A-49.65~9.7063~9024±31.54±0.37.69±0.62.11±0.042.49±0.0741.81±2.6641.78±1.5442.70±1.2216.76±0.68
WQD-A-59.80~9.8563~9024±31.52±0.37.63±0.62.10±0.042.49±0.0745.15±2.9545.14±1.6845.36±0.7118.22±0.99

新窗口打开| 下载CSV


根据光释光和AMS14C测年结果以及各地层特征绘制地层柱状图和年龄-深度曲线图(图6)。沉积序列由下向上年龄逐渐减小,无倒置现象,符合沉积学规律。古土壤顶界和蓝灰色古湖泥顶界的AMS14C年龄分别为(1.78±0.05) cal ka BP、(30.98±0.13) cal ka BP。光释光测年结果显示古土壤底界的年龄为(4.81±0.15) ka,褶皱沙层顶界的年龄为(11.75±0.43) ka,褶皱河漫滩-风沙层顶界、底部、底界的年龄分别为(14.66±0.54) ka、(16.76±0.68) ka、(18.22±0.99) ka。依据褶皱沙层顶界和褶皱河漫滩-风沙层顶界年龄计算,3.95~8.00 m沙层的平均沉积速率为1.39 m·ka-1,则滨浅湖相沙层顶界对应年龄为12.50 ka。通过建立WQD剖面年龄-深度关系曲线,获得沉积物序列年代框架如下(图7):在30.9 ka之前为蓝灰色淤泥沉积,18.2~14.6 ka形成冻融褶皱河漫滩-风沙层,14.6~12.5 ka形成滨浅湖沙层,12.5~11.7 ka形成冻融作用与古地震扰动形成的复式褶皱沙层。11.7~4.8 ka发育泥沼土层,4.8~1.8 ka形成沼泽泥炭古土壤层,1.8 ka之后发育现代草甸土壤层。

图6

图6   若尔盖唐克黄河岸沃曲东(WQD)剖面地层柱状图与年龄-深度关系图

Fig. 6   Stratigraphy and the age-depth relationship in the WQD profile on the Yellow River bank along the Tangke reach of the Zoige Basin


图7

图7   若尔盖唐克黄河岸沃曲东(WQD)剖面沉积物粒度自然频率曲线图和粒度三角图

Fig. 7   Sediment grain-size distribution in the WQD profile on the Yellow River bank along the Tangke reach of the Zoige Basin


4.2 沉积物粒度特征

沉积物粒度可以反映其沉积环境、搬运动力及物质来源等重要信息33-35。根据粒度测试结果绘制粒度自然频率分布曲线和谢帕德三角分类图(图7),结果显示。蓝灰色古湖泥层粒度频率曲线在细粉沙6 μm和粗粉沙55 μm附近各有一个峰值,属于黏土质粉沙。褶皱河漫滩风沙层峰值为230 μm,有明显细尾,属于沙。滨浅湖沙层粒度频率曲线为多峰分布,主峰100 μm,次峰在230 μm附近与褶皱沙主峰接近,属于粉沙质沙。褶皱沙层粒度频率曲线主峰介于100~200 μm之间,并有小粗尾。泥沼土层和沼泽草甸古土壤层粒度曲线都为双峰分布,主峰介于40~50 μm之间,次峰介于7~16 μm,属于沙质粉沙。现代草甸土壤层粒度曲线峰值在70 μm附近,有明显细尾,为粉沙质沙。

5 讨论

本课题组在玛曲县城西南部黄河流出盆地瓶颈段欧强村黄河左岸第二级阶地剖面,发现古滨浅湖相沉积物顶界埋深为9.5 m,蓝灰色古湖泥顶界埋深10.0 m,其OSL年龄分别为35 ka和37 ka36。在盆地内部索克藏寺以北黄河右岸甲央玛发现蓝灰色古湖泥埋深9.6 m。其顶部OSL年龄为35 ka。本次在若尔盖盆地内部唐克段沃曲东剖面(WQD)发现蓝灰色湖相淤泥层埋深9.9 m,其顶界14C校正年龄为30.9 ka。按照前人的研究成果,若尔盖盆地在被黄河贯通之前曾长期维持着古湖泊环境,沉积了青灰色古湖相淤泥质沉积物,盆地北部黑河牧场RH孔古湖相地层顶部年龄为37.6 ka4。由此可知,古黄河沿着玛曲-欧拉断陷谷地溯源侵蚀,在37 ka时期切断了欧拉-玛曲县城之间的低矮分水岭,沟通了若尔盖盆地古湖,导致湖水泄流。这样,若尔盖古湖水系就转变为现在的黄河源水系。而盆地内部洼地在30.9 ka之前是仍然是古湖泊环境,说明黄河从溯源侵蚀沟通若尔盖湖盆水系,到彻底贯通湖盆内部,导致唐克区域洼地古湖水完全消失,经历了6 000多年时间。在时间上对应深海气候记录MIS3中晚期(图8),夏季太阳辐射异常增强,可能由于暖湿夏季风深入,亚洲中部地区有效湿度增强37-38。该时期青藏高原地区暖湿程度明显超过现代,众多高原湖泊属于扩张期,古湖水位大幅度上升,被称为青藏高原“大湖期”39-42。如青海湖最高湖岸形成于38 ka左右,在33.8~23.6 ka多次经历湖泊扩张;察尔汗盐湖经历多次扩张过程43-44。所以若尔盖盆地内部唐克段黄河岸剖面底部的蓝灰色古湖泥,正是形成在这种气候温暖湿润,古湖扩张时期。其沉积物质地细腻,分选性良好,伴有臭鸡蛋气味,其中丰富的有机质长期处于水下封闭还原环境,分解过程生成大量H2S气体,也表明这是在在深湖环境中稳定沉积形成。

图8

图8   若尔盖唐克沃曲东(WQD)剖面(图例见图6)及其与格陵兰GISP2冰芯δ18O曲线45、南京葫芦洞石笋δ18O曲线46、贵州董哥洞石笋δ18O曲线47北纬30° N夏季太阳辐射强度曲线37和亚洲中部平均有效湿度38对比图

Fig. 8   The WQD profile (The legend of the WQD stratigraphy is the same as that in Fig.6) and its correlation with Greenland GISP2 ice core δ18O45; stalagmite δ18O in Hulu Cave, Nanjing46; stalagmite δ18O in Dongge Cave, Guizhou47; 30° N summer solar radiation intensity37; and Average effective humidity in central Asia38


在黄河唐克段WQD剖面底部蓝灰色深湖相淤泥层被褶皱的浊黄橙色河漫滩-风沙层覆盖。这个覆盖层底界的OSL测年结果为18.2 ka,与古湖泥的年龄差异距大,表明两者之间存在地层缺失,为不整合接触关系。这可能黄河在贯通盆地过程当中,普遍的溯源侵蚀下切作用造成的。前人在索克藏寺以北杂威黄河岸剖面下部河漫滩沙层中发现披毛犀化石,其14C年龄为22.6 ka,黑河下游黄河岸剖面出土的原始牛化石,其14C年龄为26.6 ka7。这说明在此期间黄河在盆地之内溯源侵蚀,古湖水外泄消失,黄河古河道逐渐形成。在这个时期盆地内部曾经发生黄河洪水泛滥的事件13这个过程可能造成了唐克段WQD剖面在30.9~18.2 ka之间沉积物缺失,形成了两个地层单元之间的不整合。

这种褶皱的河漫滩-风沙层覆盖层,形成年龄为18.2~14.6 ka,是黄河上溯穿过若尔盖盆地之后,从黄河源远距离搬运来的的浊黄橙色泥沙在古湖盆地面堆积的产物,具有河漫滩沉积物的特点,同时又受到强烈的风沙活动改造成为河漫滩-风沙层。这时正处于深海沉积气候记录MIS-2阶段(图8),也就是末次冰盛期(LGM),该时期30° N太阳辐射减弱、有效湿度下降,格陵兰GISP2冰芯记录、葫芦洞石笋δ18O记录均显示气候寒冷干旱37-3845-46。根据前人研究,末次冰盛期(LGM)青藏高原降温显著,平均温度比现代低7 ℃,东北部冰川舌下伸到海拔3 800 m,东北部多年冻土下限降至海拔2 200~2 400 m,东部的横断山系与昆仑山区冰川规模比现代冰川规模大45~145倍48-51。当时若尔盖盆地玛曲降温幅度超过10 ℃,气候寒冷,冰楔假型、冻融褶皱等冰缘地貌广泛发育50。冻融褶皱是多年冻土区土体反复冻融及蠕变,其中含水层与隔水层产生冻胀差异,使土体产生塑性变形,冻融褶皱现象是多年冻土区的标志52-53。另据前人研究,该时期气候冷干,风力强大,区域风沙活动强烈54。在WQD剖面褶皱的河漫滩-风沙层之中,有显著的冻融褶皱现象[图2(b)],说明末次冰盛期若尔盖盆地处于冰缘环境中,气候极其寒冷,黄河从源区搬运来的浊黄橙色沙在两岸河漫滩普遍堆积,被风力改造的同时,也受到冻融作用的影响与改造。

在WQD剖面具有薄层水平-波状层理的滨浅湖相细沙层,堆积形成在14.6~12.5 ka。此时处于Bølling-Allerød(B/A)温暖期4255,北半球气候明显暖湿,温度快速上升(图8)。该时期北半球气候明显暖湿,温度快速上升。董哥洞和葫芦洞石笋、格陵兰GISP2冰芯记录显示气候明显温暖湿润,温度快速上升,降水量逐渐增加45-4756图8)。据前人研究,B/A温暖期青藏高原众多封闭湖泊因为降水量增多及冰川融水补给增加而进入扩张期,茶卡湖、色林错、龙木错、白硷湖、贝里克库勒湖、青海湖出现40 ka以来的次高湖面,尕海由沙漠环境向湖泊环境转变57-59。若尔盖盆地气候回暖,温度在短时间快速上升,周围山地冰川对温度变化敏感,冰川融化,形成大量冰融水汇入盆地,降水和冰融水在低洼地积聚形成大小浅湖。结合卫星影像图的分析,可知此时黄河唐克段河道尚在左岸远处蜿蜒曲折地流动,黄河右岸阿尔则乔干洼地积水扩张成为浅湖,而WQD剖面所在地就处于其滨浅湖环境,沉积了具有密集的薄层水平-波状层理的细沙层。根据盆地南部的瓦切乡瓦松和日干桥泥炭沼泽剖面的研究,这个时期的浅湖环境大致在12.6 ka前后结束,湖相沉积层中发现介形类化石,当时盆地内气候环境温暖适宜859。这个时期盆地周边高山冰川融水及降水量的增加,致使黄河发生大洪水,本课题组在唐克索克藏寺北侧甲央玛黄河岸剖面和玛曲断陷谷地达尔琼—太吾若河段曾经发现了这个时期的典型的古洪水沉积层1113

在唐克段WQD剖面在12.5~11.7 ka堆积形成具有冻融与古地震扰动的复杂的复式褶皱沙层。这个时期正处于全球性新仙女木事件(YD)60-61,根据洞穴石笋、极地冰芯氧同位素等记录(图8),亚洲季风-西风带YD发生在12.9~11.7 ka,是因为北冰洋浮冰和大量冰融水注入北大西洋导致全球气温突发性显著降低,造成冰期气候回返62-63。此时青藏高原东部降温幅度达到12 ℃以上,冰川舌下伸到海拔4 000 m,多年冻土下界高程比现代降低800 m64。若尔盖盆地内的红原二矿泥炭剖面、黑河牧场DC剖面记录的δ13C浓度突然下降、H指数近于零、介形类突然消亡等,皆指示新仙女木事件导致气候急剧变冷65-66。同时,根据在玛曲县城附近针对东昆仑大断裂活动进行的深入研究,发现在12.2 ka曾经发生大地震,导致被风成黄土覆盖的古冰水扇-洪积扇地面破裂,并且被后来的沉积物和土壤层深埋在地下深处67。在WQD剖面发现的这层复杂的复式褶皱细沙层[图2(c)],其形态特征完全可以与死海西岸剖面的震积岩层相比拟68,故而认为其是受到YD时期冻融作用扰动,再加上古地震波冲击扰动所形成的特殊现象。

在黄河唐克段WQD剖面中上部的泥沼土层的OSL测年结果为11.7~4.8 ka,表明在全新世早中期该区域地表转变为淤泥质沼泽环境。早中全新世太阳辐射增强,亚洲夏季风增强及其携带的降水丰富,高分辨率孢粉记录重建的全新世气候环境显示暖湿条件优于现代环境69。青海湖在此时出现高湖面、湖水盐度下降70,古里雅冰芯71、董哥洞等δ18O曲线47均显示温暖气候(图8)。若尔盖盆地底部地形表现为丘陵洼地,在气候湿润时期地表洼地积水,就会形成淤泥质沼泽或者泥炭质沼泽。在WQD剖面泥沼土层厚达2.5 m,为浊黄橙色粉沙,块状构造,无层理,多植物根孔,并有潜育化作用形成的灰白、灰绿、锈黄色斑。若尔盖盆地南部瓦切沼泽日干桥剖面记录显示其沼泽从12.0 ka开始发育形成72,与唐克地区淤泥质沼泽基本对应。在这个时期红原地区洼地沼泽泥炭积累速率最快72-73。看来这应当是阿尔则乔干洼地积水沼泽扩张,影响到了WQD所在地区。

到了全新世中后期,OSL年龄4.8~1.8 ka,在WQD地区的淤泥质沼泽结束长期发育,转变为泥炭质沼泽,因此堆积形成了沼泽草甸黑土类古土壤。董哥洞石笋δ18O气候记录显示从6.0 ka左右开始(图8)夏季风逐渐衰退,气候暖湿程度减弱47。若尔盖红原泥炭地纤维素δ13C升高、δ18O数值降低,泥炭积累速率减小74-76。这表明盆地内部在全新世中晚期温度下降明显,洼地沼泽植物残体不能完全分解,而快速积累泥炭黑土类古土壤。

在WQD剖面最顶部覆盖现代亚高山草甸黑土类土壤,是在1.8 ka之后发育形成。这类土壤在若尔盖黄河两岸高台地、冰水扇-洪积扇台地和基岩山丘坡麓台地地面分布广泛,皆为3.0 ka之后全新世晚期沙尘暴堆积物经过成壤改造而成13。这类土壤在湿润时呈黑棕色,质地为细沙质粉沙或者粉沙质细沙,疏松多孔,团粒构造,植物根系密集,成熟度很高。全新世晚期,若尔盖盆地风力强劲,风沙及沙尘暴过程很活跃77-79。黄河河漫滩沙之沉积物受到风力改造成为风沙层,黄河两岸各种台地高地则主要接受沙尘暴沉积物,被成壤改造形成亚高山草甸黑土类现代土壤。

6 结论

本文研究了若尔盖盆地内部黄河右岸唐克段土壤沉积物地层,从下至上地层依次发育:深湖相蓝灰色淤泥层(Lake-mud)→褶皱河漫滩-风沙层(Folded-S)→滨浅湖沙层(Lake-S)→褶皱沙层(Folded-S)→泥沼土层(Mud)→沼泽草甸古土壤层(S0)→现代草甸土壤层(MS)。该剖面反映在30.9 ka之前若尔盖盆地内部仍然维持着深湖环境,在30.9 ka之后黄河则彻底贯通若尔盖盆地,古湖水彻底的外泄消失,黄河在古湖盆底部切割形成了新的河槽,并且从盆地上游搬运来大量灰黄色泥沙,在宽广的古湖底散布堆积。

在末次冰盛期、B/A温暖期和新仙女木事件当中,沉积了厚层的松散的浊黄橙色沙层。这种物质最初是由黄河从盆地上游流域搬运而来,在盆地之内宽广的河漫滩或者洼地分散浅湖水体中沉积,并且受到末次冰盛期和YD事件中冰缘冻土作用的改造,形成了冻融褶皱构造。全新世早中期(11.7~4.8 ka),气候逐渐变得温暖湿润,唐克地区古湖底洼地形成淤泥质沼泽环境。到了全新世中晚期(4.8~1.8 ka),气候暖湿程度明显减弱,转变为泥炭沼泽草甸环境。进入全新世晚期以来(1.8 ka至今),盆地内部洼地变得干燥,泥炭沼泽显著缩小或者消失,高原风力强劲,黄河河漫滩沙受到风力改造成为沙丘或者斑状沙地,黄河河岸台地沙尘暴堆积物被改造形成亚高山草甸黑土类现代土壤。

参考文献

Li DianbaoPan BaozhuZheng Xinget al.

CDOM in the source regions of the Yangtze and Yellow Rivers, China: optical properties, possible sources, and their relationships with environmental variables

[J]. Environmental Science and Pollution Research International, 20202726): 32856-32873.

[本文引用: 1]

Xue BinWang SuminXia Weilanet al.

The uplifting and environmental change of Qinghai-Xizang(Tibetan) Plateau in the past 0.9 Ma inferred from core RM of Zoige Basin

[J]. Scientia Sinica(Terrae), 1997276): 543-547.

[本文引用: 1]

薛滨王苏民夏威岚.

若尔盖RM孔揭示的青藏高原900 ka BP以来的隆升与环境变化

[J]. 中国科学: 地球科学, 1997276): 543-547.

[本文引用: 1]

Wang SuminXue Bin.

Environment evolution of Zoige Basin since 900 ka BP and comparison study with Loess Plateau

[J]. Scientia Sinica(Terrae), 1996264): 323-328.

王苏民薛滨.

中更新世以来若尔盖盆地环境演化与黄土高原比较研究

[J]. 中国科学: 地球科学, 1996264): 323-328.

Wang YunfeiWang SuminXue Binet al.

Sedimentological evidence of the piracy of fossil Zoige lake by the Yellow River

[J]. Chinese Science Bulletin, 1995408): 723-725.

[本文引用: 2]

王云飞王苏民薛滨.

黄河袭夺若尔盖古湖时代的沉积学依据

[J]. 科学通报, 1995408): 723-725.

[本文引用: 2]

Zhou Mingzhen.

Quaternary Mammalia fossils in the Apa Zangzu Zizhizhou

.[J]. Quaternary Study in China, 195921): 8-13.

[本文引用: 1]

周明镇.

阿坝藏族自治州第四纪哺乳类化石头

[J]. 第四纪研究, 195921): 8-13.

[本文引用: 1]

Zong Guanfu.

Fossils of bos primigenius from Apa Tibetan autonomous Prefecture, Sichuan

[J]. Vertebrata Palasiatica, 1984223): 239-245 253.

宗冠福.

记阿坝藏族自治州第四纪原始牛化石

[J]. 古脊椎动物学报, 1984223): 239-245 253.

Zong GuanfuXu QinqiChen Wanyong.

Note on the late Pleistocene Mammalian fossils in the Apa Zangzu Zizhizhou

[J]. Vertebrata Palasiatica, 1985232): 161-166 186.

[本文引用: 2]

宗冠福徐钦琦陈万勇.

阿坝藏族自治州若尔盖晚更新世地层及哺乳类化石

[J]. 古脊椎动物学报, 1985232): 161-166 186.

[本文引用: 2]

Yan GeWang FubaoHan Huiyouet al.

Paleovegetational and paleoclimatic evolution series on the northeastern Qinghai-Xizang Plateau in the last 30 ka

[J]. Scientia Sinica(Terrae), 1996262): 111-117.

[本文引用: 2]

阎革王富葆韩辉友.

青藏高原东北部30ka以来的古植被与古气候演变序列

[J]. 中国科学: 地球科学, 1996262): 111-117.

[本文引用: 2]

Sun XiaohongZhao YanLi Quan.

Holocene peatland development and vegetation changes in the Zoige Basin, eastern Tibetan Plateau

[J]. Scientia Sinica(Terrae), 2017479): 1097-1109.

[本文引用: 2]

孙晓红赵艳李泉.

青藏高原东部若尔盖盆地全新世泥炭地发育和植被变化

[J]. 中国科学: 地球科学, 2017479): 1097-1109.

[本文引用: 2]

Huang Chunchang.

Palaeoflood deposits in the Zoige Basin and the enlightening on the formation of the Yellow River drainage system on the Tibetan Plateau

[J]. Acta Geographica Sinica, 2021763): 612-625.

[本文引用: 1]

黄春长.

若尔盖盆地河流古洪水沉积及其对黄河水系演变问题的启示

[J]. 地理学报, 2021763): 612-625.

[本文引用: 1]

Chen YingluHuang ChunchangZhang Yuzhuet al.

Study of the sedimentology and OSL dating of the Last Deglaciation paleoflood events along Maqu section in the source regions of the Yellow River

[J]. Journal of Glaciology and Geocryology, 2017393): 549-562.

[本文引用: 1]

陈莹璐黄春长张玉柱.

黄河源区玛曲段末次冰消期古洪水事件及其光释光测年研究

[J]. 冰川冻土, 2017393): 549-562.

[本文引用: 1]

Xiao QiliChen DouZhang Yuzhuet al.

Palaeoflood events and periglacial involutions during the last deglaciation in the Maqu reach in the Yellow River source area

[J]. Quaternary Sciences, 2022424): 1010-1026.

肖奇立陈豆张玉柱.

黄河源玛曲段末次冰消期以来古洪水事件与冻融褶皱现象研究

[J]. 第四纪研究, 2022424): 1010-1026.

Wang ZhaoduoHuang ChunchangZhou Yaliet al.

Formation of the sedimentary stratigraphy at the first bend of the Yellow River in the Zoige Basin

[J]. Journal of Glaciology and Geocryology, 2021436): 1-13.

[本文引用: 4]

王兆夺黄春长周亚利.

若尔盖盆地黄河第一湾河岸沉积地层序列及其成因研究

[J]. 冰川冻土, 2021436): 1-13.

[本文引用: 4]

Xu Maoqi.

An outline of the Quaternary environmental evolution of the Ruoergai Plateau in northwestern Sichuan

[J]. Journal of Southwest China Normal University (Natural Science), 1988134): 94-100.

[本文引用: 1]

徐茂其.

川西北若尔盖高原第四纪环境演变概要

[J]. 西南师范大学学报(自然科学版), 1988134): 94-100.

[本文引用: 1]

Sichuan Provincial Bureau of Geology and Mineral Resources. 1

200 000 regional geological survey report of Ruoergai, Hongyuan, Aba and Longriba Plates

[R]. ChengduSichuan Provincial Bureau of Geology and Mineral Resources, 1984.

[本文引用: 1]

四川省地质矿产局. 1

20万若尔盖、红原、阿坝和龙日坝幅区域地质调查报告

[R]. 成都四川省地质矿产局, 1984.

[本文引用: 1]

Zhao YanYu ZichengZhao Wenwei.

Holocene vegetation and climate histories in the eastern Tibetan Plateau: controls by insolation-driven temperature or monsoon-derived precipitation changes?

[J]. Quaternary Science Reviews, 2011309/10): 1173-1184.

[本文引用: 1]

Lianqing Fang XiaominLu Huayuet al.

Millennial-scale climate change since the last glaciation recorged by grain sizes of loess deposits on the northeastern Tibetan Plateau

[J]. Chinese Science Bulletin, 20044911): 1091-1098.

[本文引用: 1]

吕连清方小敏鹿化煜.

青藏高原东北缘黄土粒度记录的末次冰期千年尺度气候变化

[J]. 科学通报, 20044911): 1091-1098.

[本文引用: 1]

Joosten HHaberl ASchumann M.

Degradation and restoration of peatlands on the Tibetan Plateau

[J]. Peatlands International, 20081): 31-35.

[本文引用: 1]

Zheng BenxingWang Sumin.

A study on the paleo-glaciation and Paleoenviorment in the source area of the Yellow River

[J]. Journal of Glaciology and Geocryology, 1996183): 210-218.

[本文引用: 1]

郑本兴王苏民.

黄河源区的古冰川与古环境探讨

[J]. 冰川冻土, 1996183): 210-218.

[本文引用: 1]

Li XiaoyingYao ZhengyiWang Hongweiet al.

The driving mechanism of sandy desertification in the Zoige Basin of China

[J]. Journal of Desert Research, 2015351): 51-59.

[本文引用: 1]

李晓英姚正毅王宏伟.

若尔盖盆地沙漠化驱动机制

[J]. 中国沙漠, 2015351): 51-59.

[本文引用: 1]

Prescott J RHutton J T.

Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations

[J]. Radiation Measurements, 1994232/3): 497-500.

[本文引用: 1]

Adamiec GAitken M J.

Dose-rate conversion factors: update

[J]. Ancient Tl, 19981635-50.

[本文引用: 1]

Lai ZhongpingXianjiao Ou.

Basic procedures of optically stimulated luminescence (OSL) dating

[J]. Progress in Geography, 2013325): 683-693.

[本文引用: 1]

赖忠平欧先交.

光释光测年基本流程

[J]. 地理科学进展, 2013325): 683-693.

[本文引用: 1]

Murray A SWintle A G.

Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol

[J]. Radiation Measurements, 2000321): 57-73.

[本文引用: 2]

Cunningham A CWallinga J.

Selection of integration time intervals for quartz OSL decay curves

[J]. Quaternary Geochronology, 201056): 657-666.

[本文引用: 1]

ZhangFanLiuet al.

History and mechanisms for the expansion of the Badain Jaran Desert, northern China, since 20 ka: geological and luminescence chronological evidence

[J]. The Holocene, 2016264): 532-548.

[本文引用: 1]

Galbraith R FRoberts R G.

Statistical aspects of equivalent dose and error calculation and display in OSL dating: an overview and some recommendations

[J]. Quaternary Geochronology, 2012111-27.

[本文引用: 1]

Fuchs MWoda CBürkert A.

Chronostratigraphy of a sediment record from the Hajar Mountain range in north Oman: implications for optical dating of insufficiently bleached sediments

[J]. Quaternary Geochronology, 200721/2/3/4): 202-207.

[本文引用: 1]

Zhang J FZhou L PYue S Y.

Dating fluvial sediments by optically stimulated luminescence: selection of equivalent doses for age calculation

[J]. Quaternary Science Reviews, 20032210/11/12/13): 1123-1129.

[本文引用: 1]

Reimer P JAustin W E NBard Eet al.

The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55 kcal BP)

[J]. Radiocarbon, 2020624): 725-757.

[本文引用: 1]

Galbraith R FRoberts R GLaslett G Met al.

Optical dating of single and multiple grains of quartz from jinmium rock shelter, northern Australia: Part Ⅰ, experimental design and statistical models

[J]. Archaeometry, 1999412): 339-364.

[本文引用: 1]

Durcan J AKing G EDuller G A T.

DRAC: dose rate and age calculator for trapped charge dating

[J]. Quaternary Geochronology, 20152854-61.

[本文引用: 1]

Liu Dongsheng. Loess and environment[M]. BeijingScience Press1985.

[本文引用: 1]

刘东生. 黄土与环境[M]. 北京科学出版社1985.

[本文引用: 1]

Xie YuanyunZhang XuqiangHe Kuiet al.

Grain-size distribution and material source analysis of loess on the northeastern margin of the Qinghai-Tibet Plateau

[J]. Chinese Geology, 2002293): 317-321.

谢远云张序强何葵.

青藏高原东北缘黄土粒度组成及物质来源分析

[J]. 中国地质, 2002293): 317-321.

Folk R LWard W C.

Brazos River bar: a study in the significance of grain size parameters

[J]. Journal of Sedimentary Research, 1957271): 3-26.

[本文引用: 1]

Wang NaZha XiaochunHuang Chunchanget al.

Sedimentary evidence and age of the Zoige Basin dissected by the Yellow River in eastern Tibetan Plateau

[J]. Progress in Geography, 2022418): 1453-1466.

[本文引用: 1]

王娜查小春黄春长.

青藏高原东部黄河切开若尔盖湖盆的沉积证据和年代研究

[J]. 地理科学进展, 2022418): 1453-1466.

[本文引用: 1]

Berger ALoutre M F.

Insolation values for the climate of the last 10 million years

[J]. Quaternary Science Reviews, 1991104): 297-317.

[本文引用: 4]

Herzschuh U.

Palaeo-moisture evolution in monsoonal Central Asia during the last 50 000 years

[J]. Quaternary Science Reviews, 2006251/2): 163-178.

[本文引用: 4]

Li Bingyuan.

The last greatest lakes on the Xizang (Tibetan) Plateau

[J]. Acta Geographica Sinica, 2000552): 174-182.

[本文引用: 1]

李炳元.

青藏高原大湖期

[J]. 地理学报, 2000552): 174-182.

[本文引用: 1]

Jia YulianShi YafengWang Suminet al.

Lake-expanding events in the Tibetan Plateau since 40 ka BP

[J]. Scientia Sinica(Terrae), 200131(): 241-251.

贾玉连施雅风王苏民.

40ka以来青藏高原的4次湖涨期及其形成机制初探

[J]. 中国科学: 地球科学, 200131(): 241-251.

Shi YafengLiu XiaodongLi Bingyuanet al.

A very strong summer monsoon event during 40~30 ka BP in the Qinghai-Xizang(Tibet) Plateau and its relation to precession cycle

[J]. Chinese Science Bulletin, 19994414): 1475-1480.

施雅风刘晓东李炳元.

距今40~30 ka青藏高原特强夏季风事件及其与岁差周期关系

[J]. 科学通报, 19994414): 1475-1480.

Zhang ShuaiZhang JifengChen Fahuet al.

The temporal and spatial complexity of the “Great Lakes Period” on the Qinghai-Tibet Plateau (English)

[J]. Science Bulletin, 20206516): 1317-1319.

[本文引用: 2]

Chen KezaoBowler J MKelts K.

Palaeoclimatic evolution within the Qinghai-Xizang (Tibet) Plateau in the last 40 000 years

[J]. Quaternary Sciences, 1990101): 21-31.

[本文引用: 1]

陈克造Bowler J MKelts K.

四万年来青藏高原的气候变迁

[J]. 第四纪研究, 1990101): 21-31.

[本文引用: 1]

Zhang HucaiLei GuoliangChang Fengqinet al.

Age determination of shell bar section in Salt Lake Qarhan, Qaidam Basin

[J]. Quaternary Sciences, 2007274): 511-521.

[本文引用: 1]

张虎才雷国良常凤琴.

柴达木盆地察尔汗贝壳堤剖面年代学研究

[J]. 第四纪研究, 2007274): 511-521.

[本文引用: 1]

Grootes P MStuiver MWhite J W Cet al.

Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores

[J]. Nature, 19933666455): 552-554.

[本文引用: 4]

Wang YCheng HEdwards Ret al.

A high-resolution absolute-dated late Pleistocene monsoon record from Hulu cave, China

[J]. Science, 20012942345-2348.

[本文引用: 3]

Dykoski C AEdwards R LCheng Haiet al.

A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China

[J]. Earth and Planetary Science Letters, 20052331/2): 71-86.

[本文引用: 5]

Shen Ji.

Spatiotemporal variations of Chinese lakes and their driving mechanisms since the Last Glacial Maximum: a review and synthesis of lacustrine sediment archives

[J]. Chinese Science Bulletin, 20125734): 3228-3242.

[本文引用: 1]

沈吉.

末次盛冰期以来中国湖泊时空演变及驱动机制研究综述: 来自湖泊沉积的证据

[J]. 科学通报, 20125734): 3228-3242.

[本文引用: 1]

Shi YafengZheng BenxingYao Tandong.

Glaciers and environments during the last glacial maximum (LGM) on the Tibetan Plateau

[J]. Journal of Glaciolgy and Geocryology, 1997192): 97-113.

施雅风郑本兴姚檀栋.

青藏高原末次冰期最盛时的冰川与环境

[J]. 冰川冻土, 1997192): 97-113.

Xu ShuyingZhang WeixinXu Defuet al.

Discussion on the periglacial development in the northeast marginal region of Qinghai-Xizang Plateau

[J]. Journal of Glaciology and Geocryology, 198462): 15-25.

[本文引用: 1]

徐叔鹰张维信徐德馥.

青藏高原东北边缘地区冰缘发展探讨

[J]. 冰川冻土, 198462): 15-25.

[本文引用: 1]

Pan BaotianWu Guangjian.

Preliminary estimation on the drop range in tempreature during the last two glaciations in the northeastern Qinghai-Xizang Plateau

[J]. Arid Land Geography, 1997202): 17-24.

[本文引用: 1]

潘保田邬光剑.

青藏高原东北部最近两次冰期降温幅度的初步估算

[J]. 干旱区地理, 1997202): 17-24.

[本文引用: 1]

Jin H JChang X LWang S L.

Evolution of permafrost on the Qinghai-Xizang (Tibet) Plateau since the end of the late Pleistocene

[J]. Journal of Geophysical Research, 2007. doi:10. 1029/2006jf000521 . [JinH, ChangX, WangSheng’an. Evolution of permafrost on the Qinghai-Xizang (Tibet) Plateau since the end of the late Pleistocene[J]. Journal of Geophysical Research, 2007. DOI: 10. 1029/2006jf000521 .]

[本文引用: 1]

Cui Zhijiu.

On the the relationship between permafrost and glaciers and periglacial effects

[J]. Journal of Glaciology and Geocryology, 198022): 1-6.

[本文引用: 1]

崔之久.

试论多年冻土的冰缘标志及冰川与冰缘作用的关系问题

[J]. 冰川冻土, 198022): 1-6.

[本文引用: 1]

Fang Xiaomin.

The origin and provenance of Malan loess along the eastern margin of Qinghai-Xizang(Tibetan) Plateau and its adjacent area

[J]. Science China Chemistry, 1995387): 876-887.

[本文引用: 1]

Basak CFröllje HLamy Fet al.

Breakup of last glacial deep stratification in the South Pacific

[J]. Science, 20183596378): 900-904.

[本文引用: 1]

Bond GShowers WCheseby Met al.

A pervasive millennial-scale cycle in the North Atlantic Holocene and glacial climates

[J]. Science, 19972785341): 1257-1266.

[本文引用: 1]

Liu BingJin HelingSun Zhong.

Progress of studies of climate and environment changes in Gonghe Basin, northeastern Tibetan Plateau, since the last glacial maximum period

[J]. Journal of Glaciology and Geocryology, 2012342): 403-410.

[本文引用: 1]

刘冰靳鹤龄孙忠.

末次盛冰期以来青藏高原东北部共和盆地气候与环境变化研究进展

[J]. 冰川冻土, 2012342): 403-410.

[本文引用: 1]

Wang SuminShi Yafeng.

Review and discussion on the Late Quaternary evolution of Qinghai Lake

[J]. Journal of Lake Sciences, 199243): 1-9.

王苏民施雅风.

晚第四纪青海湖演化研究析视与讨论

[J]. 湖泊科学, 199243): 1-9.

Liu XingqiDong HailiangRech J Aet al.

Evolution of Chaka Salt Lake in NW China in response to climatic change during the Latest Pleistocene-Holocene

[J]. Quaternary Science Reviews, 2008277/8): 867-879.

[本文引用: 2]

Ji JunfengShen JiBalsam Wet al.

Asian monsoon oscillations in the northeastern Qinghai-Tibet Plateau since the late glacial as interpreted from visible reflectance of Qinghai Lake sediments

[J]. Earth and Planetary Science Letters, 200523361-70.

[本文引用: 1]

Ma ChunmeiZhu ChengZheng Chaoguiet al.

High-resolution geochemistry records of climate changes since the late-glacial from Dajiuhu Peat in Shennongjia Mountains, Central China

[J]. Chinese Science Bulletin, 200853(): 26-37.

[本文引用: 1]

马春梅朱诚郑朝贵.

晚冰期以来神农架大九湖泥炭高分辨率气候变化的地球化学记录研究

[J]. 科学通报, 200853(): 26-37.

[本文引用: 1]

Cheng HaiZhang HaiweiSpötl Cet al.

Timing and structure of the Younger Dryas event and its underlying climate dynamics

[J]. Proceedings of the National Academy of Sciences of the United States of America, 202011738): 23408-23417.

[本文引用: 1]

Fairbanks R G.

The age and origin of the “Younger Dryas climate event” in Greenland ice cores

[J]. Paleoceanography, 199056): 937-948.

[本文引用: 1]

Yao Tandong.

Abrupt climatic changes on the Tibetan Plateau during the Last Ice Age- Comparative study of the Guliya ice core with the Greenland GRIP ice core

[J]. Scientia Sinica(Terrae), 1999292): 175-184.

[本文引用: 1]

姚檀栋.

末次冰期青藏高原的气候突变——古里雅冰芯与格陵兰GRIP冰芯对比研究

[J]. 中国科学: 地球科学, 1999292): 175-184.

[本文引用: 1]

Zhang PingzhongWang XianbinChen Jianfaet al.

δ 13C values and Hydrogen index records in sediment organic-matter of RH core of Zoige Basin, Eastern Qing-Zang(Tibet) Plateau and their environmental significance

[J]. Scientia Sinica(Chimica), 1995256): 631-638.

[本文引用: 1]

张平中王先彬陈践发.

青藏高原若尔盖盆地RH孔沉积有机质的δ 13C值和氢指数记录

[J]. 中国科学: 化学, 1995256): 631-638.

[本文引用: 1]

Shen YongpingLiu GuangxiuShi Yafenget al.

Climate and environment in the Tibetan Plateau during the Younger Dryas cooling event

[J]. Journal of Glaciolgy and Geocryology, 1996183): 219-226.

[本文引用: 1]

沈永平刘光秀施雅风.

青藏高原新仙女木事件的气候与环境

[J]. 冰川冻土, 1996183): 219-226.

[本文引用: 1]

He WenguiXiong ZhenYuan Daoyanget al.

Palaeo-earthquake study on the Maqu fault of east Kunlun active fault

[J]. Earthquake Research in China, 2006222): 126-134.

[本文引用: 1]

何文贵熊振袁道阳.

东昆仑断裂带东段玛曲断裂古地震初步研究

[J]. 中国地震, 2006222): 126-134.

[本文引用: 1]

Lu YinWetzler NMarco Set al.

Subaqueous event deposits response to regional neotectonics: Case studies of the Dead Sea Basin and the Qaidam Basin

[J]. Quaternary Sciences, 2022423): 617-636.

[本文引用: 1]

卢银Wetzler NMarco S.

区域新构造活动的水下事件沉积响应: 以死海盆地和柴达木盆地为例

[J]. 第四纪研究, 2022423): 617-636.

[本文引用: 1]

Liang ChenZhao YanQin Fenget al.

Pollen-based Holocene quantitative temperature reconstruction on the eastern Tibetan Plateau using a comprehensive method framework

[J]. Science China Earth Sciences, 2020638): 1144-1160.

[本文引用: 1]

Lister G SKelts KChenke Zaoet al.

Lake Qinghai, China: closed-basin like levels and the oxygen isotope record for Ostracoda since the latest Pleistocene

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1991841/2/3/4): 141-162.

[本文引用: 1]

Thompson L GYao TDavis M Eet al.

Tropical climate instability: the Last Glacial Cycle from a Qinghai-Tibetan ice core

[J]. Science, 19972765320): 1821-1825.

[本文引用: 1]

Sun GuangyouLuo XinzhengTurner R E.

A study on peat deposition chronology of Holocene of Zorge Plateau in the northeast Qinghai-Tibetan Plateau

[J]. Acta Sedimentologica Sinica, 2001192): 177-181 206.

[本文引用: 2]

孙广友罗新正Turner R E.

青藏东北部若尔盖高原全新世泥炭沉积年代学研究

[J]. 沉积学报, 2001192): 177-181 206.

[本文引用: 2]

Zhou WeijianAn ZhishengPorter S Cet al.

Correlation of climatic events between East Asia and Norwegian Sea during Last Deglaciation

[J]. Scientia Sinica(Terrae), 1997273): 260-264.

[本文引用: 1]

周卫建安芷生Porter S C.

末次冰消期东亚和挪威海气候事件的对比

[J]. 中国科学: 地球科学, 1997273): 260-264.

[本文引用: 1]

Cai ChengHong BingZhu Yongxuanet al.

Carbon accumulation rate and its influence factors in the Hongyuan Holocene peat, southwest China

[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014333): 309-316.

[本文引用: 1]

蔡诚洪冰朱詠煊.

全新世红原泥炭碳积累速率及其影响因素研究

[J]. 矿物岩石地球化学通报, 2014333): 309-316.

[本文引用: 1]

Hong BingLin QinghuaZhu Yongxuanet al.

Carbon isotopic composition of the Carex Mulieensis remain of the Hongyuan peat bog in the eastern Tibetan Plateau and the Indian Ocean summer monsoon variation in the Holocean

[J]. Bulletin of Mineralogy Petrology and Geochemistry, 2003222): 99-103.

洪冰林庆华朱咏煊.

红原泥炭苔草的碳同位素组成与全新世季风变化

[J]. 矿物岩石地球化学通报, 2003222): 99-103.

Xu HaiHong YetangLin Qinghuaet al.

Temperature variations in the past 6 000 years infered from δ 18O of peat cellulose from Hongyuan, China

[J]. Chinese Science Bulletin, 20024715): 1181-1186.

[本文引用: 1]

徐海洪业汤林庆华.

红原泥炭纤维素氧同位素指示的距今6ka温度变化

[J]. 科学通报, 20024715): 1181-1186.

[本文引用: 1]

Hu GuangyinYu LupengDong Zhibaoet al.

Holocene aeolian activity in the Zoige Basin, northeastern Tibetan Plateau, China

[J]. CATENA, 2018160321-328.

[本文引用: 1]

Chai JiananZha XiaochunHuang Chunchanget al.

Identification of the sediments on the riverbank of the Yellow River in the Xiaman reach of the Zoige Basin

[J]. Journal of Lanzhou University (Natural Sciences), 2021575): 600-607.

柴佳楠查小春黄春长.

若尔盖盆地黄河辖曼段河岸沉积物成因判别

[J]. 兰州大学学报(自然科学版), 2021575): 600-607.

Jia YanaZhang YuzhuWang Ninglianet al.

Chronostratigraphic framework and paleoenvironmental interpretation of the Holocene loess-paleosol sequence in the Luoyang Basin, Central China

[J]. Aeolian Research, 202148100657.

[本文引用: 1]

/