冰川冻土, 2022, 44(5): 1640-1652 doi: 10.7522/j.issn.1000-0240.2022.0144

冰冻圈生态学

多年冻土区土壤多环芳烃污染研究进展

陆妍,1, 喻文兵,2, 张天祺1, 刘伟博1, 邱凯驰2

1.中国科学院 西北生态环境资源研究院 冻土工程国家重点实验室,甘肃 兰州 730000

2.重庆交通大学 土木工程学院,重庆 400074

A review of polycyclic aromatic hydrocarbons pollution in soil of permafrost regions

LU Yan,1, YU Wenbing,2, ZHANG Tianqi1, LIU Weibo1, QIU Kaichi2

1.State Key Laboratory of Frozen Soil Engineering,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China

2.School of Civil Engineering,Chongqing Jiaotong University,Chongqing 400074,China

通讯作者: 喻文兵,研究员,主要从事寒区工程与环境研究. E-mail: yuwb@lzb.ac.cn

收稿日期: 2021-07-29   修回日期: 2021-11-30  

基金资助: 国家自然科学基金项目.  42001069
中国科学院西北生态环境资源研究院青年基金项目.  FEYS2019007
冻土工程国家重点实验室自主课题.  SKLFSE-ZQ-49

Received: 2021-07-29   Revised: 2021-11-30  

作者简介 About authors

陆妍,助理研究员,主要从事人为活动与冻土环境相互作用研究.E-mail:luyan@lzb.ac.cn , E-mail:luyan@lzb.ac.cn

摘要

多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是一种难降解、毒性强的致癌性污染物,其广泛分布于各环境介质中,陆地环境中90%的PAHs累积在土壤中。随着资源的开发,由油品泄漏、垃圾渗滤、污水排放等行为造成的多年冻土区PAHs土壤污染问题日益突显,并且在气候变化背景下,多年冻土中的PAHs具有重新释放而造成二次污染的风险,多年冻土区土壤多环芳烃污染分布特征和迁移规律研究对评估多年冻土区生态环境风险,防治土壤持久性有机物污染,保障广大多年冻土居民生命健康安全具有重要意义。通过回顾目前国内外多年冻土区土壤中PAHs污染的相关研究,分析发现多年冻土区未受污染的土壤中PAHs的污染水平远低于中低纬度人口密集区域,可代表地球土壤中PAHs的背景值;高纬度或高海拔的地理位置以及严寒的气候使得冻土区土壤中PAHs一个普遍且最重要的来源是大气远距离传输;活动层的冻融作用主要通过改变土壤理化性质和控制水分运移方向影响PAHs在多年冻土区土壤中的垂向分布特征,多年冻土的低渗透性具有阻碍PAHs垂向迁移的作用。综合分析已有研究成果,表明目前冻土区土壤PAHs污染研究还是大量集中于表层土壤中的污染分布调查和来源解析,而关于PAHs在活动层和多年冻土层中的垂向迁移研究还仅限于对其在土壤剖面中分布状况的解释性分析,冻融作用对PAHs在土壤中的迁移、转化和归宿的影响机制还不清楚。未来多年冻土区土壤中PAHs的研究将集中于迁移转化机理与污染治理技术两方面,针对PAHs在多年冻土区土壤中迁移行为的模拟模型亟待研究开发,以实现PAHs污染储量和迁移通量的定量预测;此外,多年冻土区土壤污染问题的深入研究还需要紧密联系多圈层、多界面、多介质、多要素以及多目标污染物而开展。

关键词: 多年冻土区 ; 土壤 ; 多环芳烃 ; 污染分布 ; 垂向迁移

Abstract

Polycyclic aromatic hydrocarbons (PAHs) widely distributed in the environment medium, which is a strong carcinogenic persistent pollutant. About 90% PAHs in terrestrial environment accumulate in soils. With the development of resources in the cold region and the intensification of human activity, the soil pollution of PAHs in permafrost regions caused by oil leakage, landfill leach and sewage discharge has become increasingly prominent. Under the background of global warming, there is a risk of secondary pollution due to the re-release of PAHs from permafrost. The study on the distribution characteristics and migration process of soil PAHs pollution have great significance to the assessment of ecological environment risks, the prevention and control of persistent organic matter pollution in soil, and the protection of life and health safety of residents in permafrost region. In this review, we summarized the latest research on the distribution characteristic, source identification, vertical migration and risk assessment of PAHs in soil of permafrost regions. As the remote area on the earth, the pollution level of PAHs in the soil of permafrost region is much lower than that in the densely populated areas of middle and low latitudes, which can represent the background value of PAHs in the soil of the earth. Due to the high latitude or altitude and cold climate, a common and most important source of PAHs in soil of permafrost region is long-distance atmospheric transport. The freezing-thawing effect of the active layer affects the vertical distribution of PAHs in soil profile by changing the physical and chemical properties of soil and controlling the direction of unfrozen water migration. Meanwhile, the low permeability of permafrost can hinder the vertical migration of PAHs. Based on the overview of research results, it is concluded that the current research on soil PAHs pollution in permafrost region is mainly focused on the investigation of the distribution and source analysis of the pollution in the surface soil, while the research on the migration of PAHs in the deeper active layer and permafrost is only limited to the explanatory analysis of its distribution in the soil profile. The effects of freezing-thawing on the migration, transformation and destination of PAHs in soil are still unclear. In view of the problems and shortcomings of the current researches, it is believed that the future effort on PAHs in soil of permafrost region will focus on the migration and transformation mechanism and pollution control technology. The simulation model for migration behavior of PAHs in soil of permafrost region needs to be developed urgently to achieve the quantitative prediction of PAHs pollution reserves and migration flux. In addition, the in-depth study of soil pollution in permafrost regions needs to be carried out by closely associating with multi-layer, multi-interface, multi-medium, multi-factor and multi-target pollutants.

Keywords: permafrost region ; soil ; PAHs ; pollution distribution ; vertical migration

PDF (3087KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

陆妍, 喻文兵, 张天祺, 刘伟博, 邱凯驰. 多年冻土区土壤多环芳烃污染研究进展[J]. 冰川冻土, 2022, 44(5): 1640-1652 doi:10.7522/j.issn.1000-0240.2022.0144

LU Yan, YU Wenbing, ZHANG Tianqi, LIU Weibo, QIU Kaichi. A review of polycyclic aromatic hydrocarbons pollution in soil of permafrost regions[J]. Journal of Glaciology and Geocryology, 2022, 44(5): 1640-1652 doi:10.7522/j.issn.1000-0240.2022.0144

0 引言

多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是指一类两个或两个以上苯环稠合而成的有机化合物,具有疏水、半挥发和亲脂的特性。环境中的PAHs除极少量来源于自然本底外,绝大部分来源于人类活动和能源利用过程1。PAHs广泛分布于各环境介质中(图1),陆地环境中约90%的PAHs累积其在土壤中2。PAHs对人类和动物具有致癌、致畸、致突变作用,并且在环境中持久存在,其危害日益受到关注。PAHs进入土壤后,大部分残留在土壤中并可能受降水和灌溉等过程驱动向更深部迁移从而影响地下水,或通过食物链进入人体,对人类健康和生态环境造成不同程度的危害3-4

图1

图1   PAHs的循环模式和主要环境过程

Fig. 1   The cyclic patterns and major environmental processes of PAHs


多年冻土是指温度在0 ℃或低于0 ℃至少连续存在两年的岩土体5。现代多年冻土区约占北半球陆地面积的23.9%和整个南极洲大陆。北半球多年冻土区主要包括欧亚大陆和北美大陆多年冻土区以及南界以南的高山高原多年冻土区,大约70%分布在45° N至67° N之间。中国多年冻土主要分布在东北、西部高山和青藏高原地区,并零星分布在季节冻土区内的一些高山上,分为高纬度多年冻土和高海拔多年冻土两种。高纬度多年冻土分布介于46°30′ N与53°30′ N之间;而高海拔多年冻土则主要分布在西部高山及青藏高原,大部分位于北纬35° N以南,最南达27° N左右6。多年冻土区具有很强的资源优势和发展潜力,蕴藏着丰富的水利、石油、矿产、天然气和森林资源,对人民生活和经济建设有举足轻重的影响7。近年来,随着全球寒区经济的发展,人为活动的加剧,由油品泄漏、垃圾渗滤、污水排放等行为造成的多年冻土区PAHs土壤污染问题日益突显8;加之“全球蒸馏”或“蚱蜢跳”效应下低环芳烃的沉积和气候变暖背景下持久性有机污染物的重新环境分配9-11,土壤PAHs污染正严重威胁着多年冻土区的生态环境安全和居民健康。

目前,在人口密度大且经济发展水平高的非冻土区,关于土壤PAHs污染的报道和研究较为普遍和成熟,已有多篇主题性综述文章12-16介绍研究进展;而有关冻土区土壤PAHs污染研究相对有限,最初始于对有机物泄漏事故的现场调查17-18,之后逐渐有学者开始关注多年冻土区土壤中PAHs的分布、来源、迁移规律及其在气候变化背景下重新释放至大气或迁移至地下水的风险8-9。多年冻土区土壤多环芳烃污染分布特征和迁移规律研究不仅对评估多年冻土区生态环境风险,防治土壤持久性有机物污染,保障广大多年冻土居民生命健康安全具有重要意义,也是持久性有机污染物多介质多圈层循环机制探究和全球综合治理的重要组成部分。本文在总结回顾国内外多年冻土区土壤PAHs污染研究的基础上,归纳了目前研究的关键结论,并对未来可能的调查和研究方向提出了展望,以期为今后冻土区PAHs的研究提供参考。

1 多环芳烃在多年冻土区土壤中的分布特征

土壤是环境中持久性有机污染物的储库和中转站,其中PAHs的浓度水平可以反映出一个地区的污染状况。目前有关土壤PAHs的文献报道主要集中在美国国家环境保护局(U.S. Environmental Protection Agency,USEPA)优先控制的16种化合物上19表1)。表2列出了全球部分冻土区土壤中PAHs的污染水平。

表1   16种USEPA优控PAHs的主要理化性质(25 ℃)

Table 1  The main physicochemical properties of the 16 PAHs with controlled priority listed by the USEPA(25 ℃)

名称简称苯环数摩尔质量/(g·mol-1水溶性/(mg·L-1辛醇-水分配系数LgKOW饱和蒸气压/Pa
Nap2128.1731.50003.371.1×101
苊烯AcPy3152.203.93004.008.9×10-1
Acp3154.213.93003.922.9×10-1
Flu3166.221.98004.188.0×10-2
Phe3178.231.15004.572.5×10-2
Ant3178.230.07504.541.1×10-3
荧蒽FL4202.260.20605.221.1×10-3
Pyr4202.260.13205.185.5×10-4
苯并(a)蒽BaA4228.290.00905.901.5×10-5
Chry4228.290.00205.866.1×10-7
苯并(b)荧蒽BbF5252.310.00205.802.1×10-5
苯并(k)荧蒽BkF5252.320.00086.001.3×10-7
苯并(a)芘BaP5252.320.00406.047.5×10-7
二苯并(a,h)蒽DBA5278.350.00066.754.3×10-10
茚并(1,2,3-cd)芘INcdP6276.340.00056.501.0×10-10
苯并(g,h,i)苝BghiP6276.340.00036.501.4×10-8

新窗口打开| 下载CSV


表2   全球部分冻土区土壤中PAHs的污染水平

Table 2  Pollution levels of PAHs in soils in parts of permafrost regions

地区场地类型样品数量PAHs检出种类∑PAHs/(ng·g-1采样年份
最大值最小值平均值
北极地区Ny-Ålesund20自然地表1216324371572007
Svalbard21群岛土壤81611 60052.8003 170.0002014
俄罗斯沿海22群岛沿海30151 360.0037.002015
俄罗斯Belyi岛23自然地表3614240.00100.00116.002014
Yamal-Nene24矿区4016131.0078.1099.202017
欧洲挪威25林地36151 050.08.6150.01998
东北部26低温泥炭地68143 700.0150.01 500.02017
南极洲McMurdo站27科考站201588 4525.3001997
Scott Base28燃油污染13118 150.041.01999
Jubany站29科考站12251 182.010.02004
菲尔德斯半岛30自然地表16374.068.9188.02009
青藏高原全境31偏远地区4115389.005.5459.902007
东南部32自然地表4816770632012010
东南部33矿区41161 26.6426.3052.342015
中东部34公路沿线55161 276.4040.47267.972013
中东部35湖泊周边46161 173.095.0240.32014
中北部36湖泊流域716614.060.6194.02007
中部37自然地表441626.660.439.212010
西部38自然地表371659.514.430.82014
珠穆朗玛峰39自然地表24115951682005
色季拉山40阴坡和阳坡15161 984.099.31 017.02012
大兴安岭地区41农田、林地、湿地194161 637.4176.96538.722018

新窗口打开| 下载CSV


图2

图2   全球多年冻土区土壤中PAHs污染调查分布

Fig. 2   Spatial distribution and mean values of ∑PAHs from soils in permafrost region refers to the Northern Hemisphere (a), refers to the Antarctica (b)


表2中可以看出,由于地处偏远,多年冻土区未受明显人为干扰的土壤中PAHs含量远低于中低纬度人口密集区域,属于地球边远地区污染水平,可代表地球土壤中PAHs的背景值39。在北冰洋沿岸的军事和工业场所,由于石油泄漏而造成的土壤PAHs污染是阿拉斯加北极地区的一个主要的环境问题。俄罗斯北极Yamal地区近几十年来受工业发展、油气开采以及交通运输的影响日益严重,其Beliy岛研究站附近土壤中苯并(a)芘含量明显高于对比样点,当地苯并(a)芘当量严重超过20 ng·g-1的指导值23;受采矿活动影响区域的土壤中5环和6环芳烃的存储量约为(0.14±0.017) t24。南极洲土壤中PAHs的研究主要集中在科学考察站附近,该地受垃圾堆放、燃油泄漏和露天燃烧等人为活动影响较大,南极McMurdo站27四种PAHs单体萘、苊、二氢苊和荧蒽的含量分别高达27 000、17 800、 15 700 μg·g-1和13 300 μg·g-1

我国的青藏高原平均海拔大于4 000 m,有“世界屋脊”之称,区域内人烟稀少,几乎无工业生产活动。根据多项调查研究,青藏高原未受扰动土壤中PAHs的浓度范围大致为50~770 ng·g-1[42,远低于受人类影响较大的农业、工业土壤;其整体污染水平,与南极偏远地区(34.9~171.0 ng·g-1 dw)43和加拿大山区(2.03~789.00 ng·g-1 dw)44相当。在PAHs组成上,各地情况不同。通常受人为污染的土壤中高分子量(5环或6环)芳烃占比较重,而未扰动自然区域则低分子量芳烃占比较重21

土壤中PAHs的纵向分布是其本身理化性质和原位水文地质条件综合作用的结果。受活动层冻融循环作用和多年冻土层低渗透性的影响,冻土区土壤中PAHs的纵向分布在遵循疏水性有机污染物在非冻土区土壤中分布规律的基础上也表现出一定的特殊性。青藏高原工程走廊沿线80 cm深度土壤剖面中PAHs浓度随着深度的增加而减小,低分子量的2或3环芳烃降低幅度更大,高分子质量PAHs更倾向于停留在10 cm以上的表层45;而与通常土壤剖面中PAHs浓度随着深度的增加而减小的规律不同,俄罗斯北极Yamal-Nenets自治区铬铁采矿场及周边土壤活动层中PAHs含量则随深度的增大而增加,但2环和3环芳烃在多年冻土层中大幅减少,而5环和6环芳烃则明显增加24;南极Jubany站由土壤表层向下PAHs浓度也表现出升高趋势,最高值位于活动层和多年冻结层界面略下方,再向下PAHs浓度大幅降低29。此外,PAHs在土壤剖面中的分布状态也与污染程度和累计年限有关,南极洲被燃油污染30年之久场地的地表0~2 cm、2~10 cm深度和10~20 cm深度土壤中PAHs的含量分别为362、8 105 ng·g-1和2 543 ng·g-1[28;而在北极Yamal地区Beliy岛背景区域的地表0~5 cm、5~10 cm深度和10~15 cm深度土壤中PAHs的含量分别为116.89、109.67 ng·g-1和109.65 ng·g-1[23

总体而言,多年冻土区土壤中PAHs的空间分布在大的区域尺度上主要受污染源的距离、地理位置、气候条件等宏观因素的影响,而在小范围区域土壤中PAHs的分布则主要受土壤理化性质、PAHs自身分子特性及外界环境等微观因素的控制。

2 多年冻土区土壤中多环芳烃的来源解析与循环机制

PAHs的成因可分为岩石成因、生物成因和高温成因3类46:与原油及其产品相关的属于岩石成因,由生物(各类微生物和植物)过程或在海洋沉积物的早期成岩阶段产生的属于生物成因,源于化石燃料或有机质燃烧的属于高温成因。PAHs的来源可以分为自然来源和人为来源,自然来源包括生物体(某些藻类、植物和细菌)内合成、森林草原自然起火或火山喷发,人为来源主要包括石油精炼、煤炭气化液化、煤焦油沥青生产、焦炭和铝材生产、居民供暖及汽车尾气排放等。土壤中自然形成的PAHs含量甚微,绝大多数源于人为排放,受人为活动影响的土壤中PAHs含量比自然地表通常要高两个数量级以上47

多年冻土区大部分区域未受人为活动干扰;即使在个别由人为活动污染的场地,污染源也较为单一。根据现有报道,北半球高纬度及北极地区的直接排放PAHs的人为活动包括发电厂、采矿、燃油泄漏、垃圾焚烧22-24;南极洲地区主要源于科学考察站的生活活动27-29;青藏高原则少量来自交通运输和居民生活所需的生物质燃烧313448。此外,高纬度或高海拔的地理位置以及严寒的气候使得冻土区土壤中PAHs一个普遍且最重要的来源是大气远距离传输(long range atmospheric transport,LRAT)49。在大气远距离传输的过程中,“全球蒸馏效应”或“蚱蜢跳效应”可以使蒸气压较高、挥发性更强的低环芳烃通过反复的蒸发和凝结沉积到较冷的偏远极地地区或高海拔山区50-52。挪威西南海岸土壤中PAHs浓度高于其他区域,其主要源于英国和中欧地区的大气远距离运输和当地有效的湿沉降25。特征单体比值表明生物质和化石燃料的低温燃烧是青藏高原PAHs的主要来源31;根据反向气团轨迹模型,谢婷等36推断冬季青藏高原中部与北部的污染主要受西风带影响,夏季高原中部位点的污染物主要源自印度次大陆,而北部位点还受到中国内陆省份的影响。该规律在青藏高原冰川和雪冰中也得到了印证53。根据PAHs的组成特点,珠穆朗玛峰地区土壤中的污染主要源于是中亚及印度北部等人类活动频繁地区的家庭燃烧和汽车尾气排放,而冬季盛行的西风是污染物远距离迁移至此的主要贡献者39。并且在越偏远的地区由大气传输而来的PAHs比重越大,在南极菲尔德斯半岛地区,大气传输是PAHs来源的主要途径30;而在我国大兴安岭多年冻土区土壤中PAHs的来源以高温燃烧源和石油污染源为主,大气远距离传输外来源为少量41。虽然目前关于重分子量有机化合物在多年冻土中的报道有限,但仍然不能排除多年冻土中PAHs是来自古沉积物的可能。Pastukhov等26在欧洲东北部多年冻土区南缘的低温泥炭高原土壤中检测出了大量的重质PAHs,其主要源于有机质的低温生物积累。在某些区域,土壤中的PAHs可能主要来自生物或自然过程54,其在土壤剖面中的组成分布是一个古气候标志55,可以反映当地的古植被阶段和泥炭形成历史。

作为一种持久性有机污染物9,PAHs在自然环境中的循环涉及多个圈层和介质,并与水循环和碳循环相互关联耦合。大气是影响环境中PAHs迁移转化的重要介质,沉降行为是PAHs脱离大气进入土壤和水体的重要途径,影响着PAHs在大气、土壤、水和沉积物等介质之间的源汇转化。PAHs进入土壤后大部分残留在土壤中,通过扩散和迁移等过程降低其浓度;可能受降水和灌溉等过程影响向更深部渗透从而影响到地下水,也可能重新挥发进入大气环境,对大气形成二次污染;同时,PAHs的强亲脂性使其易被植物或哺乳动物的胃肠道吸收,通过食物链进入人体,对人类健康造成致癌、致畸和致突变的危害。此外,许多研究表明生物降解是土壤中PAHs去除的主要机制,普聿等56研究了在低温冻融环境下,固定化混合菌对菲(Phe)和苯并芘荧恩(BbF)污染土壤的生物强化修复作用,从耐冷微生物修复环境污染的角度为寒区PAHs污染土壤修复提供了理论基础。

3 多年冻土区土壤中多环芳烃的垂向迁移研究

富集在土壤中的PAHs会经历复杂的环境地球化学过程,主要包括挥发、吸附、淋滤、降解以及在土壤和其他环境介质之间的迁移转化等57。由于PAHs的疏水性和持久性,迁移是其主要的地球化学过程,而吸附则是控制土壤中PAHs迁移转化的主要作用58。土壤对PAHs的吸附受其中矿物组分和有机质的共同作用。当土壤中存在一定含量的有机质时,矿物组分对有机污染物的吸附起次要作用,以物理吸附为主59

由于土壤体系的复杂性,目前对PAHs在土壤中的迁移研究尚属于探索阶段,一些学者从土壤理化性质(颗粒组分、有机质含量、有机质组成及pH值)、PAHs特性以及外界环境等因素出发,对非冻土区PAHs的吸附行为、影响因素和分布特征进行了大量研究60-63。主要的结论可归纳为以下6点:(1)PAHs在土壤剖面中的含量总体随着深度的增加而降低,其峰值一般位于表层或次表层;(2)由于自身特性,而相比于高分子量,低分子量的PAHs在土壤中的纵向迁移能力更强;(3)PAHs会优先富集在有机碳和黏粒含量较高的土壤中,且高分子量的PAHs受有机碳截留的程度更高,有机质层可以通过控制PAHs在土壤剖面中淋滤而阻挡其垂向迁移;(4)低浓度的溶解性有机质(dissolved organic matters,DOM)由于累计吸附和共吸附作用对PAHs的迁移起抑制作用,而浓度达到一定程度时,将使PAHs的迁移速率加快64;(5)土壤pH的改变将通过影响DOM所带电荷的电性而影响PAHs的迁移速率,pH值增加能增强低环芳烃的迁移淋滤能力,pH值降低则更能促进高分子质量PAHs的垂向迁移65。(6)土壤温度可以通过影响PAHs土壤溶液和孔隙水中的扩散和溶解度而改变其吸附系数,从而影响PAHs在土壤中的迁移扩散通量66-67。这些认识可为冻土区土壤中PAHs的迁移机制研究提供思路和参考。

目前关于冻土区土壤中PAHs迁移规律的研究还基本处于空白,仅有部分污染调查研究对PAHs在活动层和多年冻土层中的分布状况进行了解释性分析23-242629。活动层的冻融循环作用和多年冻土层的存在是高寒地区影响PAHs在土壤中迁移和分布的独特因素,下面将对这些进行着重讨论。

3.1 冻融循环作用对PAHs环境行为的影响

PAHs在经受冻融循环作用的土层中的迁移规律决定了区域土壤、地下水及水体沉积物中的污染特征。以往的研究表明土壤在冻融循环过程中,水热条件的周期性变化会影响其物理化学及生物学性质,主要表现为:导致土壤孔隙度增加,容重随之降低;使土壤大团聚体破碎成小团聚体,细颗粒物表现出向中等大小颗粒物聚集的趋势;增强土壤硝化作用,促进溶解性有机酸的释放,导致土壤pH值降低;使有机碳不同程度地暴露和释放,加快土壤有机碳矿化速率,导致有机碳组分的固定与活化产生分异68-70。如前分析,这些影响都与PAHs在土壤中的迁移和赋存状态密切相关。刘红71通过试验分析研究发现冻融作用会使溶解性有机质与PAHs表观结合常数的增大,提高PAHs在环境中的流动性的同时降低其生物利用度。有证据表明,土壤在经历冻融循环和自然老化以后,PAHs的提取效率会发生明显改变72-74。此时DOM与PAHs能够发生非共价结合作用,从而控制其在环境中的行为。安显金和李维75利用室内试验模拟了冻融循环和长期放置两种环境下土壤中菲和芘的解吸过程,结果表明,与自然放置相比,冻融条件下的解吸作用更弱。这与Yu等76所得出的冻融作用可增强溶解性有机碳吸附性的结论一致。

在土壤冻融循环过程中,土壤水分运移的方向将出现周期性变化。PAHs在土壤中主要与土壤有机质相结合。因此,携带着PAHs的溶解性有机碳随着土壤水分迁移及在固相中的再分配可能是冻融过程中PAHs在土壤中迁移的重要途径之一。已有冻融试验发现,以腐质泥炭77、沙和黏土78为材料的冻结锋面处,未冻部分的有机污染浓度较高。Barnes等79认为这是由于结晶冰的形成或冰的膨胀而使烃类物质从孔隙中移动而导致的。除了重力作用下的向下迁移,在冻结期,冻结吸力可能使活动层底部累积的PAHs向地表迁移;在季节融化期,高水位和厌氧条件也容易把疏水性的低密度有机颗粒重新冲出。此外,积雪融化和夏季降水作用下多孔土壤的快速排水将造成土壤剖面中PAHs浓度很大的年际变化24

土壤在冻融循环作用下,细小的颗粒会移动到深部,而较大颗粒会在上层累积,即冻融分选作用80。由于较强的疏水性,PAHs对粒径较小、吸附表面积大且有机质含量高的的黏土和淤泥具有较强的吸附作用81。因此,冻融循环作用有利于PAHs的向下迁移,目前已有的调查结果也表明受冻融循环土壤剖面中PAHs的迁移机制涉及细颗粒的运动;但这是一个十分缓慢的过程,在活动层土壤受PAHs污染的整个过程中,细颗粒的机械迁移对PAHs在土层中的垂向迁移量贡献有限24。此外,在黏土和淤泥含量较少但颗粒较大的土壤中,PAHs的代谢程度更大82。因此,寒区土壤中细颗粒含量及其在土壤基质中的动力学是决定PAHs在冻土区分布和迁移的关键因素。

3.2 多年冻土层对污染物迁移的阻碍作用

冻土或其他冻结态物质被普遍认为是地表和下垫层之间物质传输的有效屏障,尤其是含水率较低的矿物质层,其拦截效果更为明显83-85。尽管未冻水中的污染物依然可以通过孔隙扩散到多年冻土中,但对于疏水性的PAHs依然是有效的屏障。Curtosi等29研究发现南极尤巴尼站由土壤表层向下PAHs浓度升高,最高值位于活动层和多年冻结层界面略下方,再向下PAHs浓度大幅降低,表明冻土对于PAHs的迁移具有低渗透屏障作用。在大兴安岭冻土区,PAHs浓度的峰值出现在土壤表层或次表层以及融冻交界层41,同样说明冻土的低渗透性可以有效截留PAHs,阻止PAHs对地下水及深层土壤的污染。

但在某些作用机制(毛细作用下向上扩散、由浓度梯度和温度梯度引起的扩散和热扩散、平流、吸附及少冰区的渗透)下,物质运输在冻土中依然有可能实现86,在活动层与多年冻土边界处也可能存在化学反应87。已有研究表明,多年冻土不是非水相液体(nonaqueous phase liquid,NAPL)污染垂直迁移的有效屏障。Biggar等17在加拿大埃尔斯米尔岛空军基地燃油泄漏场地的活动层向下1.5 m处发现了非液态的石油烃类物质。阿拉斯加巴罗小镇伊米克普克湖(Imikpuk Lake)东北岸连续多年冻土带的活动层厚度约为0.5~2.0 m,而1995年在深度超过3.0 m的地方发现了自由烃类化合物,该物质由20世纪70至80年代地表燃油泄漏污染迁移至此88。Andersland等89将此归因为液体对冰的侵蚀和非饱和冻土中的冰裂隙,即污染物在重力作用下以未冻水为介质通过冻结物质中相互连接的空隙扩散至多年冻土层。

图3

图3   PAHs在多年冻土区土壤剖面中的迁移过程

Fig. 3   Migration of PAHs in soil profiles in permafrost regions


综上所述,受冻融作用对土壤理化性质和水分控制的影响,PAHs在活动层剖面的迁移过程受水分重力、空隙毛细力和冻结吸力以及细颗粒土壤位移多种非一致方向作用力的综合影响,其作用机制更为复杂,因此各地土壤剖面中PAHs的分布特征因当地气候、土质、水文和污染源等状况而各异,相对贡献的量化还需要更为细致的实验设计和实地调查加以确定。但根据目前关于多年冻土区土壤剖面中PAHs污染分布有限的调查文献报道可以肯定,与非冻土区土壤剖面中的迁移过程相比,PAHs在多年冻土区活动层中的垂向流动性更强,尤其是高质量的PAHs,其含量在多地表现出随着土壤深度的增加而升高的趋势。此外,多年冻土的低渗透性也使得剖面中PAHs的浓度峰值普遍出现在多年冻土层略下方。

4 多年冻土区土壤中PAHs的风险评价

摄入和暴露是PAHs主要的风险源。因此,对环境中PAHs的暴露风险进行评估和预警对于保护人体健康具有重要意义。风险评价包括生态风险评价和健康风险评价,目前土壤中使用最广泛的PAHs风险评价方法是毒性当量因子法(Toxic Equivalency Factors,TEFs)和终生致癌风险法(Incremental Lifetime Cancer Risk,ILCR)14

由于多年冻土区地处偏远,人迹罕至,除了个别曾发生污染事故的区域,PAHs含量普遍很低,暂时未见有致癌健康风险的报道90。但是在人为排放量增加以及气候变暖的背景下,存在潜在的生态风险。已有学者分别对PAHs在南极洲的苔藓-鱼-企鹅91、青藏高原草场的大气-牧草-牦牛92和纳木错湖的浮游生物-无脊椎动物-鱼933种食物链中的富集过程进行了研究,均发现了PAHs的生物放大性,其毒性将对当地的生物群落构成了威胁。地气间的交换状态表明,青藏高原土壤是高分子质量PAHs的“汇”;但由于有机碳含量低,也是易挥发的低分子质量PAHs的潜在“二次源”92。此外,多年冻土区极低的温度、光照不足和一年中大部分时间的积雪可能会抑制土壤中的光化学和微生物反应而阻碍PAHs的降解,使其降解速度明显慢于自然降解和生物修复水平94;加之在黑暗季节之后,较高的PAHs浓度可能会形成氧和硝基PAHs,其毒性/致癌性甚至高于PAHs原化合物;这将显著增大冻土区土壤中PAHs的累积速度和毒性95

在全球变暖的背景下,冰川融化被认为是持久性有机污染物的次要来源,多年冻土退化也是冰冻圈演变的一个重要过程96。多年冻土的融化将对其中PAHs的运移和归宿产生深远影响10-1197-98。如前所述,多年冻土由于其低渗透性,对当地的土壤污染可以起到有效的隔离和稳定作用,而多年冻土退化和泥炭的侵蚀可能增加周边海域、湖泊和河流沉积物中PAHs的残留量99-100。此外,活动层增厚也会通过提高有机碳的活性而影响与有机污染物相关的生物化学循环过程,从而扩大多年冻土区土壤中PAHs的迁移范围,对生态系统产生不利影响8101。积雪融化是多年冻土区的主要水文事件,寒区土壤中的PAHs可能通过融雪径流迁移至水体或沉积物中,造成更大范围的污染102

5 总结和展望

PAHs作为一种广泛存在于环境介质中的持久性有机污染物,研究其在多年冻土区土壤中分布特征和迁移规律对评估多年冻土区生态环境风险,防治土壤持久性有机物污染,保障广大多年冻土区居民生命健康安全具有重要意义。本文通过回顾国内外冻土区土壤中PAHs污染的相关研究可以看出,目前冻土区土壤PAHs污染研究还是大量集中于表层土壤中的污染分布调查和来源解析;对于深层土壤的研究十分有限,关于PAHs在活动层和多年冻土层中的迁移机制的研究,仅限于对PAHs在土壤剖面中分布状况的解释性分析,冻融作用对PAHs在土壤中的迁移、转化和归宿的影响机制还不清楚。针对现有研究存在的问题和不足,对今后多年冻土区土壤PAHs污染研究提出以下展望:

(1)高纬度、高海拔多年冻土区土壤中PAHs的污染组分检测和来源解析将会受到持续关注,明晰PAHs的远距离大气输送轨迹还需要更多地区的实地调查资料,先进便捷的原位检测仪器在土壤PAHs污染调查中有待开发和应用。

(2)解析环境介质中PAHs的来源对研究PAHs的运移轨迹和污染防治具有重要意义。在污染程度低且污染源相对简单的冻土区,简便的特征比值法、主成分分析法和正定矩阵因子分解法经常被结合使用;但随着研究的深入,可信度更高的特定化合物同位素比值法将会逐渐被广泛使用。

(3)多年冻土中PAHs污染储量的估算将有助于评价气候变化背景下寒区环境的污染风险,为实现对PAHs及其类似污染物在正退化中的多年冻土中的动态监测,活动层原位水热监测和同位素示踪在以后的工作中应该和PAHs污染调查同步开展。

(4)目前土壤中PAHs迁移转化过程的研究还处于起步阶段,未来一段时期,研究内容将会集中在迁移转化机理与污染治理技术两方面,针对淋溶驱动下PAHs在经受冻融循环土壤中的迁移模拟模型亟待研究开发,通过微生物技术修复寒区PAHs污染土壤的研究将蓬勃发展。

(5)多年冻土区土壤污染问题的深入研究需要紧密联系多圈层、多界面、多介质、多要素以及多目标污染物而开展,随着多年冻土区资源的开发和气候变暖,在更大的区域尺度和更长的时间尺度上对多年冻土源汇角色转变、PAHs跨区域传输途径以及迁移通量估算的研究将持续开展。

参考文献

Gocht TLigouis BHinderer T Met al.

Accumulation of polycyclic aromatic hydrocarbons in rural soils based on mass balances at the catchment scale

[J]. Environmental Toxicology and Chemistry, 2007264): 591-600.

[本文引用: 1]

Agarwal T.

Concentration level, pattern and toxic potential of PAHs in traffic soil of Delhi, India

[J]. Journal of Hazardous Materials, 20091711/2/3): 894-900.

[本文引用: 1]

Zhang JuanFan ShukaiDu Xiaominget al.

Accumulation, allocation, and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in soil-Brassica chinensis system

[J]. PLoS One, 2015102): e0115863.

[本文引用: 1]

Xu PengjunTao BuYe Zhiqianget al.

Polycyclic aromatic hydrocarbon concentrations, compositions, sources, and associated carcinogenic risks to humans in farmland soils and riverine sediments from Guiyu, China

[J]. Journal of Environmental Sciences, 201648102-111.

[本文引用: 1]

Qin Dahe.

Glossary of cryospheric science

[Z], BeijingChina Meteorological Press2016.

[本文引用: 1]

秦大河.

冰冻圈科学辞典

[Z]. 2版. 北京气象出版社, 2016.

[本文引用: 1]

Zhou Youwu. Geocryology in China[M]. BeijingScience Press2000.

[本文引用: 1]

周幼吾. 中国冻土[M]. 北京科学出版社2000.

[本文引用: 1]

Cheng GuodongZhao LinLi Renet al.

Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau

[J]. Chinese Science Bulletin, 20196427): 2783-2795.

[本文引用: 1]

程国栋赵林李韧.

青藏高原多年冻土特征、变化及影响

[J]. 科学通报, 20196427): 2783-2795.

[本文引用: 1]

Pongpiachan SHattayanone MPinyakong Oet al.

Quantitative ecological risk assessment of inhabitants exposed to polycyclic aromatic hydrocarbons in terrestrial soils of King George Island, Antarctica

[J]. Polar Science, 20171119-29.

[本文引用: 3]

Wang XiaopingSun DianchaoYao Tandong.

Climate change and global cycling of persistent organic pollutants: A critical review

[J]. Scientia Sinica(Terrae), 20164610): 1301-1316.

[本文引用: 3]

王小萍孙殿超姚檀栋.

气候变化与持久性有机污染物全球循环

[J]. 中国科学: 地球科学, 20164610): 1301-1316.

[本文引用: 3]

Ma JianminHung HMacdonald R W.

The influence of global climate change on the environmental fate of persistent organic pollutants: a review with emphasis on the Northern Hemisphere and the Arctic as a receptor

[J]. Global and Planetary Change, 201614689-108.

[本文引用: 1]

Potapowicz JSzummińska DSzopińska Met al.

The influence of global climate change on the environmental fate of anthropogenic pollution released from the permafrost: Part I. Case study of Antarctica

[J]. Science of the Total Environment, 20196511534-1548.

[本文引用: 2]

Wilcke W.

SYNOPSIS polycyclic aromatic hydrocarbons (PAHs) in soil: a review

[J]. Journal of Plant Nutrition and Soil Science, 20001633): 229-248.

[本文引用: 1]

Sun JiantengPan LiliTsang D C Wet al.

Organic contamination and remediation in the agricultural soils of China: a critical review

[J]. Science of the Total Environment, 2018615724-740.

Abdel-Shafy H IMansour M S M.

A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation

[J]. Egyptian Journal of Petroleum, 2016251): 107-123.

[本文引用: 1]

Kuppusamy SThavamani PVenkateswarlu Ket al.

Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: technological constraints, emerging trends and future directions

[J]. Chemosphere, 2017168944-968.

Shi BingfangLi YongjunLiu Xixiang.

Research review on the progress of the regional geochemistry of polycyclic aromatic hydrocarbons in China

[J]. Journal of Safety and Environment, 2013135): 10-20.

[本文引用: 1]

史兵方李拥军刘细祥.

中国多环芳烃区域地球化学研究进展

[J]. 安全与环境学报, 2013135): 10-20.

[本文引用: 1]

Biggar K WHaidar SNahir Met al.

Site investigations of fuel spill migration into permafrost

[J]. Journal of Cold Regions Engineering, 1998122): 84-104.

[本文引用: 2]

McCarthy KWalker LVigoren L.

Subsurface fate of spilled petroleum hydrocarbons in continuous permafrost

[J]. Cold Regions Science and Technology, 2004381): 43-54.

[本文引用: 1]

Ma Yingge.

Evaluation physical chemical properties of 16 PAHs and their application in fugacity model and typical area in Shanghai

[D]. ShanghaiShanghai Jiao Tong University2009.

[本文引用: 1]

马英歌.

多环芳烃物理化学性质的确定及其在逸度模型和上海典型环境研究中的应用

[D]. 上海上海交通大学2009.

[本文引用: 1]

Wang ZhenMa XingdongNa Guangshuiet al.

Correlations between physicochemical properties of PAHs and their distribution in soil, moss and reindeer dung at Ny-Ålesund of the Arctic

[J]. Environmental Pollution, 200915711): 3132-3136.

[本文引用: 1]

Marquès MSierra JDrotikova Tet al.

Concentrations of polycyclic aromatic hydrocarbons and trace elements in Arctic soils: a case-study in Svalbard

[J]. Environmental Research, 2017159202-211.

[本文引用: 2]

Abakumov E VTomashunas V MLodygin E Det al.

Polycyclic aromatic hydrocarbons in insular and coastal soils of the Russian Arctic

[J]. Eurasian Soil Science, 20154812): 1300-1305.

[本文引用: 2]

Abakumov EShamilishviliy GYurtaev A.

Soil polychemical contamination on Beliy Island as key background and reference plot for Yamal region

[J]. Polish Polar Research, 2017383): 313-332.

[本文引用: 4]

Ji XiaowenAbakumov EPolyako Vet al.

The ecological impact of mineral exploitation in the Russian Arctic: a field-scale study of polycyclic aromatic hydrocarbons (PAHs) in permafrost-affected soils and lichens of the Yamal-Nenets autonomous region

[J]. Environmental Pollution, 255113239.

[本文引用: 7]

Nam J JThomas G OJaward F Met al.

PAHs in background soils from Western Europe: influence of atmospheric deposition and soil organic matter

[J]. Chemosphere, 2008709): 1596-1602.

[本文引用: 2]

Pastukhov A VKaverin D AGabov D N.

Polycyclic aromatic hydrocarbons in cryogenic peat plateaus of northeastern Europe

[J]. Eurasian Soil Science, 2017507): 805-813.

[本文引用: 3]

Mazzera DHayes TLowenthal Det al.

Quantification of polycyclic aromatic hydrocarbons in soil at McMurdo Station, Antarctica

[J]. Science of the Total Environment, 19992291/2): 65-71.

[本文引用: 3]

Aislabie JBalks MAstori Net al.

Polycyclic aromatic hydrocarbons in fuel-oil contaminated soils, Antarctica

[J]. Chemosphere, 19993913): 2201-2207.

[本文引用: 2]

Curtosi APelletier EVodopivez C Let al.

Polycyclic aromatic hydrocarbons in soil and surface marine sediment near Jubany Station (Antarctica). Role of permafrost as a low-permeability barrier

[J]. The Science of the Total Environment, 20073831/2/3): 193-204.

[本文引用: 5]

Ma XindongYao ZiweiWang Zhenet al.

Distribution and environmental behavior of pahs in different matrixes on the fildes peninsula, Antarctica

[J]. Chinese Journal of Polar Research, 2014263): 285-291.

[本文引用: 2]

马新东姚子伟王震.

南极菲尔德斯半岛多环境介质中多环芳烃分布特征及环境行为研究

[J]. 极地研究, 2014263): 285-291.

[本文引用: 2]

Wang ChuanfeiWang XiaopingGong Pinget al.

Polycyclic aromatic hydrocarbons in surface soil across the Tibetan Plateau: spatial distribution, source and air-soil exchange

[J]. Environmental Pollution, 2014184138-144.

[本文引用: 3]

Yang RuiqiangZhang ShujiangLi Anet al.

Altitudinal and spatial signature of persistent organic pollutants in soil, lichen, conifer needles, and bark of the southeast Tibetan Plateau: implications for sources and environmental cycling

[J]. Environmental Science & Technology, 20134722): 12736-12743.

[本文引用: 1]

Li JunYuan GuoliLi Pinget al.

The emerging source of polycyclic aromatic hydrocarbons from mining in the Tibetan Plateau: distributions and contributions in background soils

[J]. Science of the Total Environment, 2017584/58564-71.

[本文引用: 1]

Zhou WenwenLi JunHu Jianet al.

Distribution, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons(PAHs) in soils of the central and eastern areas of the Qinghai-Tibetan Plateau

[J]. Environmental Science, 2018393): 1413-1420.

[本文引用: 2]

周雯雯李军胡健.

青藏高原中东部表层土壤中多环芳烃的分布特征、来源及生态风险评价

[J]. 环境科学, 2018393): 1413-1420.

[本文引用: 2]

Sun NaLu ChengangGao Xianget al.

Distribution and source of polycyclic aromatic hydrocarbons (PAHs) in soil of east Qingzang Plateau

[J]. Environmental Science, 2007283): 664-668.

[本文引用: 1]

孙娜陆晨刚高翔.

青藏高原东部土壤中多环芳烃的污染特征及来源解析

[J]. 环境科学, 2007283): 664-668.

[本文引用: 1]

Xie TingZhang ShujuanYang Ruiqiang.

Contamination levels and source analysis of polycyclic aromatic hydrocarbons and organochlorine pesticides in soils and grasses from lake catchments in the Tibetan Plateau

[J]. Environmental Science, 2014357): 2680-2690.

[本文引用: 2]

谢婷张淑娟杨瑞强.

青藏高原湖泊流域土壤与牧草中多环芳烃和有机氯农药的污染特征与来源解析

[J]. 环境科学, 2014357): 2680-2690.

[本文引用: 2]

Yuan GuoliWu LijuanSun Yonget al.

Polycyclic aromatic hydrocarbons in soils of the central Tibetan Plateau, China: Distribution, sources, transport and contribution in global cycling

[J]. Environmental Pollution, 2015203137-144.

[本文引用: 1]

Zhou RuichenYang RuiqiangJing Chuanyong.

Polycyclic aromatic hydrocarbons in soils and lichen from the western Tibetan Plateau: concentration profiles, distribution and its influencing factors

[J]. Ecotoxicology and Environmental Safety, 2018152151-158.

[本文引用: 1]

Wang XiaopingYao TandongCong Zhiyuanet al.

Content and Altitudinal gradient distribution Polycyclic aromatic hydrocarbons (PAHs) in soils and vegetation in Mount Qomolangma region

[J]. Chinese Science Bulletin, 20065121): 2517-2525.

[本文引用: 3]

王小萍姚檀栋丛志远.

珠穆朗玛峰地区土壤和植被中多环芳烃的含量及海拔梯度分布

[J]. 科学通报, 20065121): 2517-2525.

[本文引用: 3]

Luo DongxiaZhang ShujuanYang Ruiqiang.

Distribution and source analysis of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides(OCPs) in soils from Shergyla Mountain, southeast Tibetan Plateau

[J]. Environmental Science, 2016377): 2745-2755.

[本文引用: 1]

罗东霞张淑娟杨瑞强.

藏东南色季拉山土壤中有机氯农药和多环芳烃的浓度分布及来源解析

[J]. 环境科学, 2016377): 2745-2755.

[本文引用: 1]

Zhao Hongyun.

Accumulation of polycyclic aromatic hydrocarbons(PAHs) in permafrost at high latitude

[D]. HarbinHeilongjiang University2018.

[本文引用: 3]

赵鸿云.

高纬度多年冻土中多环芳烃(PAHs)累积规律研究

[D]. 哈尔滨黑龙江大学2018.

[本文引用: 3]

Tao ShuWang WentaoLiu Wenxinet al.

Polycyclic aromatic hydrocarbons and organochlorine pesticides in surface soils from the Qinghai-Tibetan Plateau

[J]. Journal of Environmental Monitoring: JEM, 2011131): 175-181.

[本文引用: 1]

Klánová JMatykiewiczová NMáčka Zet al.

Persistent organic pollutants in soils and sediments from James Ross Island, Antarctica

[J]. Environmental Pollution, 20081522): 416-423.

[本文引用: 1]

Choi S DShunthirasingham CDaly G Let al.

Levels of polycyclic aromatic hydrocarbons in Canadian Mountain air and soil are controlled by proximity to roads

[J]. Environmental Pollution, 200915712): 3199-3206.

[本文引用: 1]

Wang ShuangNi HonggangSun Jianlinet al.

Polycyclic aromatic hydrocarbons in soils from the Tibetan Plateau, China: distribution and influence of environmental factors

[J]. Environmental Science Processes Impacts, 2013153): 661.

[本文引用: 1]

Tsibart A SGennadiev A N.

Polycyclic aromatic hydrocarbons in soils: sources, behavior, and indication significance (a review)

[J]. Eurasian Soil Science, 2013467): 728-741.

[本文引用: 1]

Page D SBoehm P DDouglas G Set al.

Pyrogenic polycyclic aromatic hydrocarbons in sediments record past human activity: a case study in prince william sound, Alaska

[J]. Marine Pollution Bulletin, 1999384): 247-260.

[本文引用: 1]

Sheng JiujiangWang XiaopingGong Pinget al.

Monsoon-driven transport of organochlorine pesticides and polychlorinated biphenyls to the Tibetan Plateau: three year atmospheric monitoring study

[J]. Environmental Science & Technology, 2013477): 3199-3208.

[本文引用: 1]

Gregor D JGummer W D.

Evidence of atmospheric transport and deposition of organochlorine pesticides and polychlorinated biphenyls in Canadian Arctic snow

[J]. Environmental Science & Technology, 1989235): 561-565.

[本文引用: 1]

Gouin TMackay DJones K Cet al.

Evidence for the “grasshopper” effect and fractionation during long-range atmospheric transport of organic contaminants

[J]. Environmental Pollution, 20041281/2): 139-148.

[本文引用: 1]

Ottar B.

The transfer of airborne pollutants to the Arctic region

[J]. Atmospheric Environment(1967), 1981158): 1439-1445.

Daly G LWania F.

Organic contaminants in mountains

[J]. Environmental Science & Technology, 2005392): 385-398.

[本文引用: 1]

Li QuanlianWang NinglianWu Xiaoboet al.

Sources and distribution of polycyclic aromatic hydrocarbons of different glaciers over the Tibetan Plateau

[J]. Scientia Sinica(Terrae), 20104010): 1399-1409.

[本文引用: 1]

李全莲王宁练武小波.

青藏高原冰川雪冰中多环芳烃的分布特征及其来源研究

[J]. 中国科学:地球科学, 20104010): 1399-1409.

[本文引用: 1]

Thiele SBrümmer G W.

Bioformation of polycyclic aromatic hydrocarbons in soil under oxygen deficient conditions

[J]. Soil Biology and Biochemistry, 2002345): 733-735.

[本文引用: 1]

Gabov DYakovleva EVasilevich R.

Vertical distribution of PAHs during the evolution of permafrost peatlands of the European Arctic zone

[J]. Applied Geochemistry, 2020123104790.

[本文引用: 1]

Pu YuSu DanWang Xinet al.

Application of immobilization technology of cold tolerance microorganisms in the remediation of polycyclic aromatic hydrocarbons in freeze-thaw soil

[J]. Journal of Agro-Environment Science, 20193810): 2362-2370.

[本文引用: 1]

普聿苏丹王鑫.

固定化混合菌修复冻融土壤PAHs污染的研究

[J]. 农业环境科学学报, 20193810): 2362-2370.

[本文引用: 1]

Hu XiaoFan YaoboWang Minjian.

Factors affecting behavior and fate of organic pollutants in soil

[J]. Advances in environmental science, 19995): 14-22.

[本文引用: 1]

胡枭樊耀波王敏健.

影响有机污染物在土壤中的迁移、转化行为的因素

[J]. 环境科学进展, 19995): 14-22.

[本文引用: 1]

Wang WeiweiWu HonghaiGuo Xingmei.

Research advances in PAHs adsorption on soil-sediment interface

[J]. Chinese Journal of Ecology, 2007268): 1311-1316.

[本文引用: 1]

王伟伟吴宏海郭杏妹.

土壤和沉积物中多环芳烃的界面吸附研究进展

[J]. 生态学杂志, 2007268): 1311-1316.

[本文引用: 1]

Luo XuemeiYang ZhifengHe Mengchanget al.

Sorption of hydrophobic organic contaminants by natural organic matter in soils and sediments

[J]. Soils, 2005371):25-31.

[本文引用: 1]

罗雪梅杨志峰何孟常.

土壤/沉积物中天然有机质对疏水性有机污染物的吸附作用

[J]. 土壤, 2005371):25-31.

[本文引用: 1]

Banach-Szott MDebska BWisniewska Aet al.

Changes in the contents of selected polycyclic aromatic hydrocarbons in soils of various types

[J]. Environmental Science and Pollution Research International, 2015227): 5059-5069.

[本文引用: 1]

Cai TingDing YueZhang Zhihuanet al.

Effects of total organic carbon content and leaching water volume on migration behavior of polycyclic aromatic hydrocarbons in soils by column leaching tests

[J]. Environmental Pollution, 2019254112981.

Liu ChangliPang YajieWang Cuilinget al.

Research on the mechanisms and disciplines of clayed soils adsorb PAHs in landfill leachate

[J]. Geological Review, 2018644): 905-912.

刘长礼庞雅婕王翠玲.

黏性土对垃圾渗滤液中多环芳烃吸附机理与规律

[J]. 地质论评, 2018644): 905-912.

Hu JundongChen JingWang Xuejunet al.

CDE model simulation of PAHs transport in laboratory soil columns

[J]. Acta Scientiae Circumstantiae, 2005256): 821-828.

[本文引用: 1]

胡俊栋陈静王学军.

多环芳烃室内土柱淋溶行为的CDE模型模拟

[J]. 环境科学学报, 2005256): 821-828.

[本文引用: 1]

Qiao XiaocuiHe JiangtaoYang Leiet al.

Influences of DOM and pH on PAHs migrations in soil columns

[J]. Journal of Agro-Environment Science, 2014335): 943-950.

[本文引用: 1]

乔肖翠何江涛杨蕾.

DOM及pH对典型PAHs在土壤中迁移影响模拟实验研究

[J]. 农业环境科学学报, 2014335): 943-950.

[本文引用: 1]

Kang YunGe Xiaoli.

Simulation experiments on influences of ph level on the vertical migration of polycyclic aromatic hydrocarbons in soils

[J]. Rock and Mineral Analysis, 2010292): 123-126.

[本文引用: 1]

康耘葛晓立.

土壤pH值对土壤多环芳烃纵向迁移影响的模拟实验研究

[J]. 岩矿测试, 2010292): 123-126.

[本文引用: 1]

Piatt J JBackhus D ACapel p det al.

temperature-dependent sorption of naphthalene, phenanthrene, and pyrene to low organic carbon aquifer sediments

[J]. Environmental Science & Technology, 1996303): 751-760.

[本文引用: 1]

Cui SongFu QiangLi Tianxiaoet al.

Effect of soil temperature on migration behavior of organic pollutants during freeze-thaw period

[J]. Research of Soil and Water Conservation, 2016233): 314-320.

[本文引用: 1]

崔嵩付强李天霄.

冻融期土壤温度对有机污染物迁移行为的影响

[J]. 水土保持研究, 2016233): 314-320.

[本文引用: 1]

Gao MinLi YanxiaZhang Xuelianet al.

Influence of freeze-thaw process on soil physical, chemical and biological properties: a review

[J]. Journal of Agro-Environment Science, 20163512): 2269-2274.

[本文引用: 1]

高敏李艳霞张雪莲.

冻融过程对土壤物理化学及生物学性质的影响研究及展望

[J]. 农业环境科学学报, 20163512): 2269-2274.

[本文引用: 1]

Han LuWan ZhongmeiSun Heyang.

Research progress on the effects of freezing and thawing on soil physical, chemical and biological properties

[J]. Chinese Journal of Soil Science, 2018493): 736-742.

韩露万忠梅孙赫阳.

冻融作用对土壤物理、化学和生物学性质影响的研究进展

[J]. 土壤通报, 2018493): 736-742.

Sun BaoyangLi ZhanbinXiao Junboet al.

Research progress on the effects of freeze-thaw on soil physical and chemical properties and wind and water erosion

[J]. Chinese Journal of Applied Ecology, 2019301): 337-347.

[本文引用: 1]

孙宝洋李占斌肖俊波.

冻融作用对土壤理化性质及风水蚀影响研究进展

[J]. 应用生态学报, 2019301): 337-347.

[本文引用: 1]

Liu Hong.

Effects of freezing-thawing on dissolved organic matters in soils and their binding with phenanthrene

[D]. ShenyangLiaoning University2018.

[本文引用: 1]

刘红.

冻融对土壤溶解性有机质及其与菲结合作用的影响

[D]. 沈阳辽宁大学2018.

[本文引用: 1]

Zhao QingXing BaoshenTai Peishanet al.

Effect of freeze-thawing cycles on aging behavior of phenanthrene, pyrene and their mixture in soil

[J]. Science of the Total Environment, 2013452/453246-252.

[本文引用: 1]

Zhao QingXing BaoshanTai Peidonget al.

Effect of freeze-thawing cycles on soil aging behavior of individually spiked phenanthrene and pyrene at different concentrations

[J]. Science of the Total Environment, 2013444311-319.

Zhao QingLi PeijunStagnitti Fet al.

Effects of aging and freeze-thawing on extractability of pyrene in soil

[J]. Chemosphere, 2009764): 447-452.

[本文引用: 1]

An XianjinLi Wei.

Effects of freezing-thawing cycle and long-term placement on PAHs desorption behavior in soil of Southwest China Karst area

[J]. Chinese Journal of Ecology, 20193812): 3706-3716.

[本文引用: 1]

安显金李维.

冻融循环和长期放置对西南喀斯特地区土壤中多环芳烃解吸行为的影响

[J]. 生态学杂志, 20193812): 3706-3716.

[本文引用: 1]

Yu XiaofeiZhang YuxiaZhao Hongmeiet al.

Freeze-thaw effects on sorption/desorption of dissolved organic carbon in wetland soils

[J]. Chinese Geographical Science, 2010203): 209-217.

[本文引用: 1]

Zschocke ASchönborn MEschenbach A.

Behaviour of polycyclic aromatic hydrocarbons (PAH) in soils under freeze-thaw cycles

[C]// Egu General Assembly Conference Abstract201011437.

[本文引用: 1]

Chuvilin E MNaletova N SMiklyaeva E Cet al.

Factors affecting spreadability and transportation of oil in regions of frozen ground

[J]. Polar Record, 200137202): 229-238.

[本文引用: 1]

Barnes D LWolfe S MFiller D M.

Equilibrium distribution of petroleum hydrocarbons in freezing ground

[J]. Polar Record, 2004403):245-251.

[本文引用: 1]

Wolfe L HThieme J O.

Physical and thermal properties of frozen soil and ice

[J]. Society of Petroleum Engineers Journal, 196441): 67-72.

[本文引用: 1]

Kan A TFu GTomson M B.

Adsorption/desorption hysteresis in organic pollutant and soil/sediment interaction

[J]. Environmental Science & Technology, 1994285):859-867.

[本文引用: 1]

Krauss MWilcke W.

Sorption strength of persistent organic pollutants in particle-size fractions of urban soils

[J]. Soil Science Society of America Journal, 2002662): 430-437.

[本文引用: 1]

Bagard M LChabaux FPokrovsky O Set al.

Seasonal variability of element fluxes in two Central Siberian rivers draining high latitude permafrost dominated areas

[J]. Geochimica et Cosmochimica Acta, 20117512): 3335-3357.

[本文引用: 1]

Keller KBlum J DKling G W.

Stream geochemistry as an indicator of increasing permafrost thaw depth in an Arctic watershed

[J]. Chemical Geology, 20102731/2): 76-81.

Pokrovsky O SManasypov R MLoiko S Vet al.

Trace element transport in western Siberian rivers across a permafrost gradient

[J]. Biogeosciences, 2016136): 1877-1900.

[本文引用: 1]

Chuvilin E M.

Migration of ions of chemical elements in freezing and frozen soils

[J]. Polar Record, 199935192): 59-66.

[本文引用: 1]

Andersland O BWiggert D CDavies S H.

Hydraulic conductivity of frozen granular soils

[J]. Journal of Environmental Engineering, 19961223): 212-216.

[本文引用: 1]

Wagner A MBarker A J.

Distribution of polycyclic aromatic hydrocarbons (PAHs) from legacy spills at an Alaskan Arctic site underlain by permafrost

[J]. Cold Regions Science and Technology, 2019158154-165.

[本文引用: 1]

Andersland O BWiggert D CDavies S H.

Frozen soil subsurface barriers: formation and ice erosion

[J]. Journal of Contaminant Hydrology, 1996231/2): 133-147.

[本文引用: 1]

Wu JunLu JianLuo Yongminget al.

An overview on the organic pollution around the Qinghai-Tibet Plateau: the thought-provoking situation

[J]. Environment International, 201697264-272.

[本文引用: 1]

Montone R CTaniguchi SColabuono F Iet al.

Persistent organic pollutants and polycyclic aromatic hydrocarbons in penguins of the genus Pygoscelis in Admiralty Bay: an Antarctic specially managed area

[J]. Marine Pollution Bulletin, 20161061/2): 377-382.

[本文引用: 1]

Wang Chuanfei.

Air-surface exchange of persistent organic pollutants in the alpine grassland of the Tibetan Plateau

[D]. BeijingUniversity of Chinese Academy of Sciences2015.

[本文引用: 2]

王传飞.

青藏高原高寒草地持久性有机污染物的气-地交换研究

[D]. 北京中国科学院大学2015.

[本文引用: 2]

Ren JiaoWang XiaopingWang Chuanfeiet al.

Multimedia fate modeling of persistent organic pollutants in Nam Co basin, Tibetan Plateau

[J]. Asian Journal of Ecotoxicology, 2017123): 170-179.

[本文引用: 1]

任娇王小萍王传飞.

青藏高原纳木错流域持久性有机污染物的多介质迁移与归趋模拟

[J]. 生态毒理学报, 2017123): 170-179.

[本文引用: 1]

Shi TFredrickson J KBalkwill D L.

Biodegradation of polycyclic aromatic hydrocarbons by Sphingomonas strains isolated from the terrestrial subsurface

[J]. Journal of Industrial Microbiology and Biotechnology, 2001265): 283-289.

[本文引用: 1]

Parish J H.

Microbial transformations and degradation of toxic organic chemicals

[J]. Biochemical Education, 1998261): 99.

[本文引用: 1]

Christiansen H HEtzelmüller BIsaksen Ket al.

The thermal state of permafrost in the Nordic area during the international polar year 2007—2009

[J]. Permafrost and Periglacial Processes, 2010212): 156-181.

[本文引用: 1]

Kallenborn RHalsall CDellong Met al.

The influence of climate change on the global distribution and fate processes of anthropogenic persistent organic pollutants

[J]. Journal of Environmental Monitoring: JEM, 20121411): 2854-2869.

[本文引用: 1]

Macdonald R WHarner TFyfe J.

Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data

[J]. Science of the Total Environment, 20053421/2/3): 5-86.

[本文引用: 1]

Xue RuiChen LingLu Zhiboet al.

Spatial distribution and source apportionment of PAHs in marine surface sediments of Prydz Bay, East Antarctica

[J]. Environmental Pollution, 2016219528.

[本文引用: 1]

Yao YaoMeng XiangzhouWu Chenchouet al.

Tracking human footprints in Antarctica through passive sampling of polycyclic aromatic hydrocarbons in inland lakes

[J]. Environmental Pollution, 2016213412-419.

[本文引用: 1]

Delille DPelletier ERodriguez-Blanco Aet al.

Effects of nutrient and temperature on degradation of petroleum hydrocarbons in sub-antarctic coastal seawater

[J]. Polar Biology, 20093210): 1521-1528.

[本文引用: 1]

Yunker M BMacdonald R WCretney W Jet al.

Alkane, terpene and polycyclic aromatic hydrocarbon geochemistry of the Mackenzie River and Mackenzie shelf: riverine contributions to Beaufort Sea coastal sediment

[J]. Geochimica et Cosmochimica Acta, 19935713): 3041-3061.

[本文引用: 1]

/