冰川冻土, 2023, 45(3): 1180-1194 doi: 10.7522/j.issn.1000-0240.2023.0089

冰冻圈技术

基于可视化文献计量分析的道路除冰雪技术研究进展

刘状壮,1,2, 季鹏宇,1, 张有为1, 王振1, 程伟1, 郑文清1

1.长安大学 公路学院,陕西 西安 710064

2.长安大学 特殊地区公路工程教育部重点实验室,陕西 西安 710064

Research progress of road snow and ice removal technology based on visualized bibliometric analysis

LIU Zhuangzhuang,1,2, JI Pengyu,1, ZHANG Youwei1, WANG Zhen1, CHENG Wei1, ZHENG Wenqing1

1.School of Highway,Chang’an University,Xi’an 710064,China

2.Key Laboratory of Highway Engineering in Special Region,Ministry of Education,Chang’an University,Xi’an 710064,China

通讯作者: 刘状壮,教授,主要从事道路材料行为与工程韧性、路域环境感知与智能铺面、交通与能源融合研究. E-mail: zzliu@chd.edu.cn

收稿日期: 2022-08-31   修回日期: 2023-01-20  

基金资助: “十三·五”国家重点研发计划项目.  2021YFB1600200

Received: 2022-08-31   Revised: 2023-01-20  

作者简介 About authors

季鹏宇,硕士研究生,主要从事冬季道路除冰雪技术研究.E-mail:ANjipengyu@chd.edu.cn , E-mail:ANjipengyu@chd.edu.cn

摘要

国土面积2/3为寒区的中国拥有广泛的路网、机场和城镇等人工地面系统,除冰雪技术研究与发展对道路安全与保障起到重要作用。为全面了解国内道路除冰雪领域研究现状和趋势,通过中外常用数据库核心集获取2010年以来我国学者在道路除冰雪领域的研究文献,借助CiteSpace软件对获取的文献信息中的发文量、文献来源和关键词进行分析。结果显示,我国道路工程领域对除冰雪技术愈发重视,自2010年以来我国在该领域的发文量逐年增加。同时发现,我国道路除冰雪领域学者在中文期刊的发文量占比在近年来则有所降低,更倾向于将研究成果发表于英文期刊。结果表明,长安大学、哈尔滨工业大学等高校是该领域主要的研究机构,且国内科研院所在国际合作方面还有待提升。在研究内容方面,我国道路工程学者对融雪剂的研究在减少,更加关注流体加热路面、电热路面等新型除冰雪技术。通过对2010年以来的高共被引文献分析,电热除冰雪技术、微波加热除冰雪技术、融雪抑冰路面等技术优势突出,更易引起学者关注,但在工程应用方面存在不足。通过文献综述发现,我国道路工程除冰雪领域急需解决上述新型除冰雪技术的能耗、工艺、成本、融雪效果及路用性能平衡等几个关键方面的问题。

关键词: 道路工程 ; 除冰雪技术 ; 研究现状 ; CiteSpace ; 可视化分析

Abstract

China, two-thirds of which is cold area, has an extensive network of roads, airports, towns and other artificial pavement systems. The research and development of snow melting and de-icing technology is important in road safety and security. In order to comprehensively understand the research status and trends in the field of road snow melting and de-icing technology in China, the research documents of Chinese scholars in the field since 2010 were obtained through the core set of commonly used databases in China and abroad. The information regarding the amount, sources and keywords of documents is analyzed with CiteSpace. The results show that domestic road engineering field has paid more and more attention to snow melting and de-icing technology, which is reflected in the increase in the number of published research papers in this field in China since 2010. At the same time, it is found that technical journals published in Chinese by scholars in the field account for a large proportion of the research papers. The results show that Chang’an University, Harbin Institute of Technology and other universities are the main research forces, the international cooperation of scholars in China needs to be enhanced. In terms of research focus, domestic road engineering scholars are reducing the research on snow de-icing salt, and pay more attention to new snow melting and de-icing technologies such as hydronic heating pavement and electric heating pavement. The high co-citation literature since 2010 was analyzed and found that for the technical advantages, the snow melting and de-icing technology of electric heating, microwave heating and salt-storage pavement are more likely to attract the attention of scholars, but there are obvious shortcomings in engineering application. Through the literature review, it is found that the field of snow melting and de-icing technology in domestic road engineering urgently needs to solve several key issues such as energy consumption, process, cost, snow melting effect and road performance balance of the above-mentioned new snow melting and de-icing technology.

Keywords: road engineering ; snow melting and de-icing technology ; research status ; CiteSpace ; visual analysis

PDF (5253KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

刘状壮, 季鹏宇, 张有为, 王振, 程伟, 郑文清. 基于可视化文献计量分析的道路除冰雪技术研究进展[J]. 冰川冻土, 2023, 45(3): 1180-1194 doi:10.7522/j.issn.1000-0240.2023.0089

LIU Zhuangzhuang, JI Pengyu, ZHANG Youwei, WANG Zhen, CHENG Wei, ZHENG Wenqing. Research progress of road snow and ice removal technology based on visualized bibliometric analysis[J]. Journal of Glaciology and Geocryology, 2023, 45(3): 1180-1194 doi:10.7522/j.issn.1000-0240.2023.0089

0 引言

路面积雪和结冰一直都是困扰道路交通运输行业的难题。我国有超过70%的公路在冬季会受到降雪、结冰等气候因素的影响1。路面的积雪或结冰会显著降低路面的摩擦因数,导致车辆的滑移、制动困难和制动距离增长。路面摩擦因数在干燥的情况下为0.50~1.00,在积雪的情况则会下降到0.20~0.45,而结冰条件下更是会下降到0.15以下2。路面摩擦因数的下降增加了交通事故的发生率,在积雪或结冰的情况下道路事故发生率会增加5~8倍3

为克服路面积雪和结冰对道路运输的不利影响,学者们先后提出和应用了多种道路除冰雪技术。国内对道路除冰雪技术的研究始于道路融雪剂。融雪剂用于清除路面积雪始于20世纪30年代,并伴随着工业化的发展被推广开来,我国则是在20世纪70年代才开始使用融雪剂清除路面积雪4。目前最常用的融雪剂是氯盐型融雪剂5,包括氯化钠、氯化钾、氯化钙和氯化镁等。氯盐融雪剂以其来源广泛、成本低廉、作业简单、除雪效果明显的优点被广泛应用于冰雪清除工作6-8,而融雪剂的大量使用造成了土壤与地下水的污染、道路附属设施的腐蚀和道路服役寿命的缩短9-12

传统融雪剂的巨大缺陷推动了环保型融雪剂的研发、应用和发展。以醋酸钙镁盐、尿素、醇类等物质组成的非氯型融雪剂被称为环保型融雪剂。醋酸钙镁是一种应用于环保型融雪盐的添加剂5,其融雪性能较差,但腐蚀性和毒性较小。尿素作为不含氯的有效除冰剂,对许多陆生生物是无毒的13-14,但尿素水解形成的氨会在一定程度上危害水生生物的生存15。相比于传统融雪剂,环保型融雪剂的腐蚀性更弱、对环境的影响也更小,但其成本高昂,不适用于大面积的路面除冰雪16-20

为进一步减少融雪剂对环境的影响,有学者开始从事融雪剂用量更少的融雪抑冰路面的研究。融雪抑冰路面是将融雪抑冰材料通过置换矿粉或细集料的方式添加到路面材料中的。降水后,融雪组分在渗透压的作用下释放到路表,融化路面的冰雪21。融雪组分与路面-冰雪界面的直接接触增强了融雪效果22。融雪抑冰路面材料的拌合和铺筑过程与普通沥青混合料基本相同,这为融雪抑冰路面的推广应用减少了困难。此外,融雪组分能够有效降低路面与冰雪界面的黏结力,为机械除冰雪提供便利。尽管融雪抑冰路面的服役年限长、经济效益好23-24,但融雪组分的析出会导致路面性能的显著下降25-27

微波除冰技术和电热除冰雪技术避免了融雪剂的使用。微波除冰技术是利用微波透过冰层作用于路面内部的吸波材料,使材料温度升高、加热路面,进而消除路面与冰层之间的冻结黏附作用,融化路面的积雪和冰层28-30。微波除冰雪的效果主要受吸波材料、微波频率等因素的影响31。在理想状况下,加入钢丝绒的路面在加热120 s后可升温至140 ℃32。吸波材料的加入还能够提升路面疲劳性能、高温稳定性和耐磨性能33-36,同时,加入的吸波材料还可用于沥青路面的自愈合37-38。但就融雪性能而言,微波加热融雪效率低、成本较高。电热除冰雪技术是通过在路面内部埋置发热线,利用电能加热发热线,进而加热路面、融化冰雪39-40。尽管电热除冰雪技术对环境无影响,但其融雪效果受到发热线布设参数的影响41-42,对施工工艺要求较高。限于复杂的施工工艺、高昂的成本,目前电热除冰雪技术主要应用于机场道面、隧道进出口路面和桥面铺装43-45

流体加热除冰雪技术是目前应用较为广泛的新型除冰雪技术,已在150万m2的道路上得到应用46。流体加热路面主要由热交换管道、传热流体以及热源组成47。传热流体经热源加热后,通过热交换管道将热量传递至路面,融化路面积雪和冰层。常用热源有太阳能、工业废能和地热能48-50,其中以地热能最为理想。地热能是深层地下水蕴含的能量,通过热泵将地下水泵送至换热管道。研究表明,流入热交换管道的流体温度达到60 ℃即可满足路面融雪需求51-52。为进一步提高能量利用效果,有研究以太阳能为主要热源,将太阳能和地热能进行综合利用53-54。流体加热除冰雪技术较撒布融雪剂和电热除冰雪技术更经济、环保,有更广阔的发展前景。

微波除冰技术、电热除冰雪技术和流体加热除冰雪技术等能够实现路面融雪化冰的自主性和智能性,被形象地归类为主动除冰雪技术,也被称为新型除冰雪技术。新型除冰雪技术具有环境友好、融雪效果显著、可智能控制等优点55-59,是传统除冰雪技术不错的替代选择。但目前新型除冰雪技术种类较多、原理不一,研究方向繁多且不明确。近十余年来,我国道路除冰雪技术领域研究发展迅速,2010年以后在中国知网(CNKI)数据库和Web of Science(WoS)核心集数据库的发文量均在每年10篇以上,为进一步了解我国道路除冰雪技术领域的发展状况,本文基于CNKI数据库和WoS核心库数据,借助可视化分析软件CiteSpace对2010年以来道路除冰雪领域的文献进行了分析与讨论。

1 数据来源与研究方法

中文文献数据在CNKI数据库主题检索形式下,以[(融雪+融冰+除雪+除冰+防冰+抗冰)*(路面+道路+公路)]为主题词进行检索,时间范围限定在2010年1月1日—2021年12月31日。共检索得到文献2 011篇,剔除学位论文、新闻报道等无关结果,文献来源限定至核心期刊,共获得245篇核心论文。

外文文献数据在WoS核心集主题检索形式下,以{[(snow melt) or (snowmelt) or (anti-icing) or (snow removal) or (antifreeze) or (anti-freeze) or (deicing) or (de-icing) or (ice removal)] and [(pavement) or (road) or (mixture)]}为主题词进行检索,时间范围限定在2010年1月1日—2021年12月31日,并限定发文国家为中国。检索得到文献共424篇,剔除书籍章节、会议摘要等无关结果,共获得351篇学术论文。

CiteSpace是由陈超美教授开发的一款用于文献计量分析的可视化软件,软件可以基于CNKI数据库和WoS核心集导出的文献信息对文献的关键词、发文作者、发文机构和文献来源期刊等数据进行分析,通过分析结果的可视化展现,可以直观地表现出学科领域的发展脉络、研究热点和发展方向60-62

2 道路除冰雪技术研究状况分析

CiteSpace软件仅可对CNKI数据库导出的文献数据进行发文作者、发文机构以及关键词分析,为进一步获取国内道路除冰雪领域的发展趋势,还利用CiteSpace软件对从WoS核心集导出的351篇论文的基本发文信息、合作网络、共发现情况和被引状况等内容进行分析。

2.1 发文量与新增关键词分析

核心文献的发文量能够说明该领域研究热度的变化,新增关键词数量则能够反映出该领域当前研究的创新性与前沿性。统计当年发表论文的所有关键词,并剔除往年曾出现的关键词,可获得当年的新增关键词数量。对核心文献的发文量与新增关键词数量进行分析,可以获得图1。从图1(a)可以看到,中文核心文献数量变化呈现出波动增长,且增长趋势不明显。中文核心文献的年发文量在2015年后稳定在20篇左右,但2021年的发文量出现骤降,是2016年以来的首次降至20篇以下。国内学者发表于WoS核心集的文献数量在2014年追平中文核心文献后仍保持增长,且在2017年后持续以超过每年10篇的速度增长,2021年的发文量更是达到69篇之多。

图1

图1   核心文献发文量与新增关键词量

Fig. 1   The number of publications and new keywords in core literature: comparison of annual publication number between Chinese core liter-ature and WoS core document (a); comparison of annual new keyword number between Chinese core literature and WoS core document (b)


图1(b)是中文核心文献与WoS核心文献年新增关键词量的比较。中文核心文献年新增关键词数量在2010年和2011年均为60个左右,随后就大幅下跌,并在随后的十年间稳定在40个左右。WoS核心文献的年新增关键词数量呈现出波动增长,自2010年的22个到2021年的212个,增长幅度较大,已远远超过中文核心文献的年新增关键词。

中文核心文献和英文核心文献在发文量和年新增关键词数量上的巨大差异反映了国内在道路除冰雪领域研究的分化:一方面,国内学者在国际高质量期刊上的发文量屡创新高,国际的合作日趋增多,国内道路除冰雪技术的研究发展前景广阔;另一方面,国内核心期刊接收的道路除冰雪技术相关的文献数量的下降又反映了该领域中文期刊发展的乏力。

2.2 文献发文机构分析

对国内道路除冰雪领域主要研究机构进行分析,可以分别获得在中文核心期刊(左列)和WoS核心期刊(右列)上发表文献数量最多的10所机构。

表1   主要研究机构发文信息

Table 1  Publications volume information of major research institutions

机构名称中文文献发文量/篇首次发文年份机构名称英文文献发文量/篇首次发文年份
长安大学492010长安大学612014
重庆交通大学122010哈尔滨工业大学332012
哈尔滨工业大学102011武汉理工大学292011
长沙理工大学92015中国科学院252012
武汉理工大学92010东南大学162011
内蒙古工业大学82011吉林大学142010
吉林大学82010中国地质大学112018
山西省交通科学研究院72013合肥工业大学112017
交通运输部公路科学研究院72012同济大学112014
中交第一公路勘察设计研究院62010中国科学院大学112018

新窗口打开| 下载CSV


从中文核心文献和WoS核心文献分析结果看,长安大学、哈尔滨工业大学和武汉理工大学是国内道路除冰雪领域研究的重要力量,其中长安大学在中文核心期刊和WoS核心集上的发文量均较突出。长安大学早期对道路除冰雪技术的研究主要集中在除冰机械、融雪剂的影响等方面。2008年,长安大学发表了多篇微波除冰雪技术相关的文献,对微波除冰雪的融雪效果、影响除冰效果的关键因素等进行研究3163-64。2014年,长安大学首次在WoS核心集期刊上发表了道路除冰雪技术相关的论文Influence of the chloride-based anti-freeze filler on the properties of asphalt mixtures,文章通过体积置换法将混合料中的细集料或矿粉置换为防冻填料,研究了防冻沥青混合料的稳定性、高低温性能和抗冻性能59

对国内道路除冰雪领域的研究机构进一步分析可以获得研究机构的合作网络,合作网络可在一定程度上反映机构在领域内的对外合作状况。图2图3分别是对中文核心文献和WoS核心文献发文量最多的4所机构分析后获得的研究机构合作网络图。图中单位间连线的粗细代表单位间合作的频次,连线越粗表明单位间的合作次数越多。

图2

图2   中文核心文献发文机构合作网络

注:图中括号内为对应机构的发文数量;数据库与CiteSpace的计算标准不同,以数据库中的发文数量为准

Fig. 2   Cooperation network of Chinese core document publishing institutions: cooperation network of Chang’an university (a); cooperation network of Chongqing Jiaotong University (b); cooperation network of Harbin Institute of Technology (c); cooperation network of Changsha University of Science & Technology (d)

Note:The number of documents issued by corresponding institutions is in parentheses; The calculation standards of the database and CiteSpace are different. The number of issued documents is subject to database


图3

图3   WoS核心集文献发文机构合作关系

Fig. 3   Cooperation network of WoS core collection document publishing institutions: cooperation network of Chang’an University (a); cooper-ation network of Harbin Institute of Technology (b); cooperation network of Wuhan University of Technology (c); cooperation network of Chinese Academy of Sciences (d)


从中文核心文献发文机构的分析结果中可以看到,长安大学与其他单位合作广泛,与众多的高校、企业和研究院均有合作关系,其合作包括环保型融雪剂、融冰雪涂层、融雪抑冰路面、微波除冰、电热除冰等领域65-69。重庆交通大学、哈尔滨工业大学和长沙理工大学与其他单位的合作相对集中。四所高校在中文论文领域的合作者主要以国内单位为主;同时,四所高校均与工程单位有合作,针对不同道路除冰雪技术的融雪性能、对路用性能的影响等方面进行研究。WoS核心集文献的分析结果显示各研究单位的对外合作均有所增强。作为发文量最高的研究单位,长安大学的合作网络也最为复杂,其合作关系更是涉及了代尔夫特理工大学70、爱荷华州立大学71、卡内基梅隆大学72等国外高校。

总体而言,尽管国内研究单位在发文量上已经有了巨大的进步,但大部分研究单位的合作单位较少且较固定,缺少与国外研究单位的合作,在对外合作上仍然有较大的发展空间。

2.3 研究关键词分析

为进一步获取国内道路除冰雪领域的研究趋势,对中文核心文献和WoS核心文献的关键词进行了分析,分别获得了关键词共现网络(图4)和关键词突发性检验结果(图5)。同时分别提取出现频次最高的30个关键词,获取其频次、中心性和首次出现时间等信息,汇总至表2。表中左侧关键词来自CNKI核心文献,右侧关键词来自WoS核心文献,中心性越高代表该关键词与其他关键词联系越多。

图4

图4   核心文献关键词共现网络

Fig. 4   Keyword co-occurrence network of core document: keyword co-occurrence network of Chinese core document (a); keyword co-occurrence network of WoS core document (b)


图5

图5   关键词突发性检验结果

Fig. 5   Keyword bursts test results: keyword bursts test of Chinese core document (a); keyword bursts test of WoS core document(b)


表2   核心论文关键词信息

Table 2  Keyword information of core papers

序号频次中心性年份关键词序号频次中心性年份关键词
1540.552011道路工程1420.082011performance
2260.202010融雪剂2400.132010pavement
3190.222012沥青路面3400.272011concrete
4170.072013路用性能4300.132013asphalt mixture
5110.122010融雪化冰5250.092016snow
660.032012盐化物6240.092015mixture
750.042012微波除冰7230.082015ice
850.042014盐冻循环8230.092016surface
950.022013抗凝冰9190.072011model
1050.022017超疏水10180.102014asphalt pavement
1140.142012发热电缆11170.022017energy
1240.092011数值模拟12150.042015water
1340.062011改性沥青13130.022018road engineering
1440.032016水稳定性14130.052018mechanical property
1540.022010桥面铺装15120.082015filler
1640.022019综述16110.082017temperature
1730.022017涂层17100.022017system
1830.022011氯盐18100.052018aggregate
1930.022016碳纤维1990.032018design
2030.022014室内试验2090.032016behavior
2130.012016沥青胶浆2190.072010snow melting
22302015有限元2280.012018thermal conductivity
23302017微波加热2380.092011bridge
24302011影响因素2470.012018asphalt concrete
25302015橡胶颗粒2570.012019optimization
2620.152013加热功率2670.012018salt
2720.102015桥梁路面2770.042013composite
2820.032014桥面2860.012012conductivity
2920.022015季冻区2960.012016adhesion
3020.022010传热分析3060.052011conductive concrete

新窗口打开| 下载CSV


关键词共现指不同的关键词出现在同一篇文献中,图谱中关键词标签的大小代表关键词出现的频次。网络图谱能够反映关键词之间的联系、展示不同关键词共同出现的次数。图4中的两幅关键词共现网络图谱均呈现出明显的聚集性,即关键词之间的联系密切,关键词的频次自中心发散、逐渐降低。中文核心文献网络图谱中[图4(a)],融雪剂仍是高频关键词之一,尽管与之联系的凝冰点、制动距离、冰雪路面、土壤等关键词数量较多,但出现频次均较低。结合表2可以发现,盐化物是作为融雪抑冰路面和防冻路面相关的关键词出现的,其研究内容已经偏向新型融雪化冰技术,表明在2010年后针对融雪剂的研究已经逐渐减少。目前研究多集中于新型除冰雪技术(发热电缆、碳纤维、微波除冰、超疏水)、除冰雪技术的应用对道路性能带来的影响(水稳定性、路用性能)和除冰雪技术的原理与工作性能研究(功能特性、微观结构)等方面(括号内为研究方向在关键共现网络中对应的关键词)。

WoS核心集文献关键词共现网络聚集性更加明显[图4(b)],网络中出现的路面、性能、混凝土、沥青混合料、能量等高频关键词主要集中在网络中心。网络中与融雪剂相关的关键词出现频次均小于7,且与之关联的关键词主要是两栖动物、淡水、氯盐等出现频次更低的关键词。同时,与以流体加热除冰雪技术(energy、temperature)、电热型除冰雪技术(conductive concrete、conductivity)、融雪抑冰路面技术(composite、filler)、微波除冰雪技术(slag、microwave)等新型除冰雪技术为代表的除冰雪方法相关的关键词占据了共现网络的绝大部分。受融雪成本的影响,目前新型除冰雪技术主要应用于桥面、机场道面和高速公路重要路段等场景,而国内的高等级路面大多为沥青路面,这一点在关键词中也得到了体现:在两幅共现图谱中均出现了大量与沥青混合料、沥青路面相关的关键词。同时,表2中与融雪剂相关的关键词出现频次的降低也印证了国内道路除冰雪领域研究重心由传统除冰雪技术向新型除冰雪技术的转移。

为进一步获取国内道路除冰雪领域的研究状况,利用CiteSpace软件对关键词进行突发性检验,分别获取了中文核心文献和WoS核心集文献中突发性最强的25个关键词(图5)。关键词突现可以反映出某段时间内出现频次激增的关键词,并在一定程度上反映出领域内研究热点或研究重点的变化状况。由于文献数据基数小,突发性检验结果中的关键词突现强度值较低,且大部分关键词的突现持续时间仅为两到三年,仅有发热电缆、盐化物、deicing salt、bridge、conductive asphalt concrete等关键词的突现持续时间稍长。与关键词共现网络结果一致,与融雪剂相关的关键词在突现性检验结果中并不明显,其在WoS核心集中的突现时间仅持续到了2016年。2015年以后,检验结果中与新型除冰雪技术相关的关键词大量出现,如发热电缆、橡胶颗粒、碳纤维、超疏水、感应加热等,且突现强度较高,与表2中的关键词信息具有较强的一致性。

2015年以前的中文突现关键词仅有6个,2010年和2011年甚至没有突现关键词出现。2015年以后,每年出现的突现关键词不断增多,2017年更是出现了6个突现关键词。表明2015年以后,道路除冰雪技术领域的研究开始由融雪剂“一家独大”转向多种技术“共同发展”。2015年以后,突现关键词更迭速度加快,表明道路除冰雪技术的研究不断发现新的研究方向和研究内容,也表明该领域研究的不断深入。与中文突现关键词不同,2015年以前的英文突现关键词有11个,与2015年以后的突现关键词数量接近持平,且2013年以后英文突现关键词的更迭速度就已经开始加快。表明中国学者主要将创新性较强的研究成果首先发表于英文期刊,导致了中文突现关键词更迭速度加快迟滞于英文突现关键词。同时,中文文献的关键词相比于英文文献呈现出一定的滞后性,如橡胶铺装、碳纤维、涂层等关键词最早在英文文献中发生突现,这一结果也与前文中的论断一致。

2.4 文献被引状况分析

文献被引用的频次能在一定程度上反映出文献的质量与影响力。文献共被引分析的是两篇文献之间的关系,不同文献共同被引用的次数越多就说明其间的关系越紧密,其学科背景联系越紧密。CiteSpace仅能对WoS核心集文献的共被引状况进行分析,故通过CiteSpace对国内学者发表于WoS核心集的文献的共被引情况进行分析,并获得文献共被引网络关系图[图6(a)],对共被引网络进行聚类,可获得文献共被引聚类图[图6(b)]。

图6

图6   WoS核心文献共被引状况分析

Fig. 6   Co-citation analysis of WoS core documents: co-citation network of WoS core document(a); co-citation network cluster of WoS core document (b)


图6(a)中的每个节点代表一篇文献,标签为文献对应的作者和发表时间,图中显示的标签是被引次数大于7次的文献作者。图谱中的文献共被引次数大于20次的文献作者有潘攀、高杰和徐慧宁,其研究方向均集中在新型除冰雪技术的研究与应用。潘攀在2011年发表的论文Design and performance of an asphalt pavement snow melting system中对太阳能集热沥青路面融雪的可行性进行了研究73。太阳能集热沥青路面可通过吸收太阳能来加热埋设在路面内部的管道中的流体,并在有融雪化冰需要时将能量释放出来74,在路面中添加碳纤维不但可以提高混合料性能,而且可以将路面的导热系数提高30%以上75

高杰在2014年发表的Laboratory investigation on microwave deicing function of micro surfacing asphalt mixtures reinforced by carbon fiber中对碳纤维掺量、微波频率和冰厚等影响除冰效果的因素进行分析,结果显示,冰厚在约15 mm时微波除冰的时间最短,碳纤维掺量在0.45%时,最短除冰时间缩短到了55 s30。高杰还研究了钢丝绒、钢渣等导电相材料在微波除冰路面中的应用76-77

徐慧宁在Development and testing of heat- and mass-coupled model of snow melting for hydronically heated pavement中建立了流体加热路面融雪模型,并对模型的准确性进行了验证78,其研究还表明在冬季蒸发率和加热功率较小的条件下融雪极易产生二次冻结55。随后,徐慧宁等人还建立了由热泵、换热管等组成的太阳能-土壤源热能流体加热路面融雪系统,并利用模型分析了环境温度、雪层厚度、输入热功率等融雪条件对融雪过程中各阶段融雪特性的影响79-80

刘凯有三篇论文的共被引次数大于7次,其研究方向主要集中在电热融雪技术方面,并先后对电热融雪路面的温度场分布81-82、路面性能变化83-84、融雪路面设计85-86等内容进行了研究。

CiteSpace中的聚类是通过将关系紧密的关键词进行分类,并给同一类别下的每个关键词一个值,同一类别中值最大的关键词即为此聚类的代表,作为该聚类的标签出现。通过CiteSpace中的最大似然算法(Log-Likelihood Ratio,LLR)对WoS核心文献共被引网络进行聚类可以获得文献的研究内容和研究领域。选取聚类面积最大的11个结果,如图6(b)所示。聚类结果主要有Gibbs free energy、road engineering、functional performance、snow-melting pavement、anti-icing asphalt pavement、thermal conductivity、temperature change、silicone modified polyurea coatings、conductive asphalt concrete、deicing efficiency、monitoring system,聚类结果中已经没有与融雪盐相关的关键词,而是出现了大量与新型除冰雪技术有关的关键词。表明高共被引文献的研究内容也主要集中在新型除冰雪技术领域。

为进一步获取国内道路除冰雪领域的研究趋势,剔除文献共被引分析结果中的国外作者,获得共被引量最高的20篇文献,对文献的研究内容进行分析获得文献的研究方向,汇总至表3。这20篇文献的发表时间均在2014—2019年之间,2017年与2018年发表的文献占到了一半。这些文献其研究方向均为新型除冰雪技术,包括电热除冰雪、流体加热除冰雪、融雪抑冰路面、微波除冰雪和超疏水涂层等除冰雪方式,这也与文献共被引网络的聚类结果一致。

表3   高共被引论文信息统计

Table 3  Information of high co-citation papers

序号论文发表年份共被引频次除雪方式
1A review on hydronic asphalt pavement for energy harvesting and snow melting201527hydronic heating
2Utilization of steel slag as aggregate in asphalt mixtures for microwave deicing201724microwave heating
3Investigation of design alternatives for hydronic snow melting pavement systems in China201823hydronic heating
4Investigation on snow-melting performance of asphalt mixtures incorporating with salt-storage aggregates201719salt-storage pavement
5Modeling and operation strategy of pavement snow melting systems utilizing low-temperature heating fluids201518hydronic heating
6Influence of the chloride-based anti-freeze filler on the properties of asphalt mixtures201418salt-storage pavement
7Snow and ice melting properties of self-healing asphalt mixtures with induction heating and microwave heating201818microwave heating
8Performance evaluation of high-elastic/salt-storage asphalt mixture modified with Mafilon and rubber particles201814salt-storage pavement
9Experimental study of deicing asphalt mixture with anti-icing additives201614salt-storage pavement
10Automatically melting snow on airport cement concrete pavement with carbon fiber grille201414carbon fiber
11Thermal analysis and optimization of an ice and snow melting system using geothermy by super-long flexible heat pipes201714heating pipes
12Microwave deicing for asphalt mixture containing steel wool fibers201913microwave heating
13Performance evaluation of high-elastic asphalt mixture containing deicing agent Mafilon201512salt-storage pavement
14The equivalent plasticity strain analysis of snow-melting heated pavement concrete exposed to inner elevated temperatures201711conductive concrete
15Study on effectiveness of anti-icing and deicing performance of super-hydrophobic asphalt concrete201811super-hydrophobic coating
16Prediction models of the thermal field on ice-snow melting pavement with electric heating pipes201711electric heating pipes
17Engineering properties and microwave heating induced ice-melting performance of asphalt mixture with activated carbon powder filler201910microwave heating
18Snow melting and deicing characteristics and pavement performance of active deicing and snow melting pavement201910active deicing pavement
19Energy consumption and utilization rate analysis of automatically snow-melting system in infrastructures by thermal simulation and melting experiments201710electric heating pipes
20Low temperature property and salt releasing characteristics of antifreeze asphalt concrete under static and dynamic conditions20159salt-storage pavement

新窗口打开| 下载CSV


在高共被引文献中,与融雪抑冰路面、电热除冰雪、流体加热除冰雪和微波除冰雪相关的论文数量分别为6篇、4篇、4篇和4篇。值得一提的是,分析结果中还出现了与超疏水涂层相关的文献Study on effectiveness of anti-icing and deicing performance of super-hydrophobic asphalt concrete,文献对超疏水沥青混凝土在不同工况下的防冰、除冰性能进行了研究,结果表明超疏水涂层能够有效地促进水滴在表面的运动,降低路面与冰层之间的黏附力87

在共被引文献网络聚类结果和高共被引文献中,没有直接与道路融雪剂相关的文献出现,表明国内道路除冰雪领域的研究在近年来已经逐渐转向流体加热路面、电加热路面、微波除冰等方向。

3 研究展望

对CNKI数据库和WoS核心集导出的文献数据进行分析,可以发现国内道路除冰雪领域的研究经历了自融雪剂、除冰械等传统除冰雪方法至流体加热除冰雪、电热除冰雪等新型除冰雪技术的变化。

目前新型除冰雪技术的研究已成为领域内的研究前沿。新型除冰雪技术的种类较多,融雪原理不一,应用前景也各不相同。电热除冰雪技术对环境的影响较小、可以实现智能控制,但其施工工艺复杂、对能量的需求较大378588。在路面表面涂覆超疏水涂层可以有效地延长结冰时间、降低路面-冰层的黏结力,但超疏水涂层强度低、与基体间的附着力小、经济性差,极易在夏秋季节的高温条件下损坏,还会影响路面抗滑性能89-90。作为目前应用最广泛的新型除冰雪技术,流体加热路面可以利用更易获取的地热能、太阳能和工业废能作为热能来源5191-92,合理设计流体加热路面还能够实现夏季吸收路面热量、冬季释放热量融化冰雪的功能。

综合来看,电加热除冰雪技术对电能需求较大,电热除冰雪技术与可再生能源结合和节能设计能够有效地推动电热融雪路面的推广应用。如我国西北地区风能、太阳能等可再生能源资源丰富,且冬季又常常受到冰雪灾害的困扰,可在西北地区自然资源丰富的关键路段开展电热除冰雪技术与可再生能源结合应用93。另一方面,对电热除冰雪路面的合理设计和路面材料的合理选取也能减少能量的损耗、提高能量利用率。超疏水涂层的应用会影响到交通的安全运行,可以研究成本更低、生命周期更短、时效性更强的一次性超疏水涂层,既保证原有超疏水涂层的功能,又避免涂层对路面功能的影响94-96。流体加热融雪技术对流体的温度有一定要求,可以研究利用地热能、工业废能、太阳能与电能结合综合供能的方式提高能量利用率5297。高昂的运行成本限定了新型除冰雪技术的大面积应用,可建立新型除冰雪技术与机械除冰雪综合应用的除冰雪方法,即运用新型除冰雪技术消除路面与冰雪界面的黏结,使机械除冰雪的效率更高、对路面的损坏更小2998

目前对融雪剂的研究占比依然很大,但已不再是研究前沿,且大量研究集中于环保型融雪剂和融雪抑冰路面。受经济条件、能量供应和地理位置的限制,大量的地区无法应用新型除冰雪技术,对环保型融雪剂的开发仍旧是重要研究内容999。融雪抑冰路面中融雪抑冰材料的添加与释放会对路面性能造成严重影响,融雪抑冰材料的释放速率控制和对混合料性能的影响仍旧是亟待解决的问题222527

4 结论

本文先后基于CNKI和WoS核心集数据库文献,运用CiteSpace软件进行可视化分析,对2010年来国内道路除冰雪领域的研究状况进行了研究与分析,并获得以下结论:

(1)目前中国道路工程领域对除冰雪技术关注度越来越高,但中文期刊的发文量占比则呈现下降趋势,这主要是领域内相当部分的高质量论文发表于英文期刊,国内非前沿性研究发展减缓。同时,材料科学尚未有突破性的发展和新型除冰雪技术创新性的缺乏也是导致这一结果的原因。

(2)国内在道路除冰雪领域耕耘较深的机构主要是长安大学、哈尔滨工业大学和长沙理工大学等高校,这也是该领域技术创新的主要阵地,但国内研究机构与国外研究机构的合作较少,仍有进一步提升的空间。

(3)关键词和文献共被引的分析结果均显示国内对融雪剂的关注已逐渐降低,新型除冰雪技术,如电热除冰雪、超疏水涂层和融雪抑冰路面等相关的技术已经逐渐开始占据研究的主流。总体而言,我国的融冰雪技术研究正在逐渐由融雪剂融雪转向更为环保的新型融雪技术,而新型除冰雪技术目前仍有较多的技术问题和应用缺陷有待解决。

参考文献

Tan YiqiuZhang ChiXu Huininget al.

Snow melting and deicing characteristics and pavement performance of active deicing and snow melting pavement

[J]. China Journal of Highway and Transport, 2019324): 1-17.

[本文引用: 1]

谭忆秋张驰徐慧宁.

主动除冰雪路面融雪化冰特性及路用性能研究综述

[J]. 中国公路学报, 2019324): 1-17.

[本文引用: 1]

Tang JunjunGuo ZhongyinLi Changchenget al.

Typical road status identification model based on pavement friction coefficient in winter pavement friction coefficient

[J]. China Journal of Highway and Transport, 20142711): 25-30.

[本文引用: 1]

汤筠筠郭忠印李长城.

基于路面摩擦因数的冬季典型路面状态识别模型

[J]. 中国公路学报, 20142711): 25-30.

[本文引用: 1]

Zhang MinChen HongWu Xiaowu.

Safety evaluation model for expressway toll stations

[J]. China Safety Science Journal, 20091910): 139-144.

[本文引用: 1]

张敏陈红吴晓武.

高速公路收费站安全评价模型

[J]. 中国安全科学学报, 20091910): 139-144.

[本文引用: 1]

Yu HaiyingZhang KeliDai Hailun.

Impact of chemical deicers on regional environment and the charateristcs of its accumulation and translocation

[J]. Journal of Soil Science, 2011425): 1276-1280.

[本文引用: 1]

余海英张科利戴海伦.

化学融雪剂对区域环境的影响及累积、扩散特点

[J]. 土壤通报, 2011425): 1276-1280.

[本文引用: 1]

Ramakrishna D MViraraghavan T.

Environmental impact of chemical deicers-A review

[J]. Water Air and Soil Pollution, 20051661): 49-63.

[本文引用: 2]

Li PingWei XiyingTengfei Nianet al.

Freezing point test of deicers on asphalt pavement in seasonal frozen

[J]. Bulletin of the Chinese Ceramic Society, 2019385): 1561-1567.

[本文引用: 2]

李萍魏西应念腾飞.

季节性冻土区沥青路面融雪剂凝冰点测试

[J]. 硅酸盐通报, 2019385): 1561-1567.

[本文引用: 2]

Gao JianpingYan NanLi Haiyinget al.

Experimental analysis of highway deicers in the application of alpine areas in southwest China

[J]. Journal of Chongqing Jiaotong University(Natural Science), 2010294): 568-570.

[本文引用: 2]

高建平燕南李海鹰.

西南高寒山区高速公路融雪剂适用性试验分析

[J]. 重庆交通大学学报(自然科学版), 2010294): 568-570.

[本文引用: 2]

Wang ZhideZhang XuDing Linget al.

Overview for national standard formulation of snow-melting agent

[J]. Inorganic Chemicals Industry, 20174912): 13-15.

[本文引用: 3]

王志德张旭丁灵.

《融雪剂》国家标准制定概况

[J]. 无机盐工业, 20174912): 13-15.

[本文引用: 3]

Trenouth W RGharabaghi BPerera N.

Road salt application planning tool for winter de-icing operations

[J]. Journal of Hydrology, 2015524401-410.

[本文引用: 4]

Xie YuchenWeng XingzhongZhang Junet al.

Study on salt-frost erosion of pavement concrete in salty soil area

[J]. Journal of Highway and Transportation Research and Development, 2017344): 25-31.

[本文引用: 1]

谢宇晨翁兴中张俊.

盐渍土地区道面混凝土盐冻侵蚀研究

[J]. 公路交通科技, 2017344): 25-31.

[本文引用: 1]

Heshmati MHaghani RAi-Emrani M.

Durability of bonded FRP-to-steel joints: effects of moisture, de-icing salt solution, temperature and FRP type

[J]. Composites Part B-Engineering, 2017119153-167.

[本文引用: 4]

Asensio EFerreira V JGil Get al.

Accumulation of de-icing salt and leaching in spanish soils surrounding roadways

[J]. International Journal of Environmental Research and Public Health, 20171412): 14981498.

[本文引用: 2]

Koryak MStafford L JReilly R Jet al.

The impact of airport deicing runoff on water quality and aquatic life in a pennsylvania stream

[J]. Journal of Freshwater Ecology, 1998133): 287-298.

[本文引用: 1]

Harless M LHuckins C JGrant J Bet al.

Effects of six chemical deicers on larval wood frogs (rana sylvatica)

[J]. Environmental Toxicology and Chemistry, 2011307): 1637-1641.

[本文引用: 2]

Schubaur-Berigan M KMonson P DWest C Wet al.

Influence of pH on the toxicity of ammonia to Chironomus tentans and Lumbriculus variegatus

[J]. Environmental Toxicology and Chemistry, 1995144): 713-717.

[本文引用: 1]

Zhou MiLin Yongbo.

Study on colored and environmentally friendly ice and snow-melting agent

[J]. China Water & Wastewater, 2011271): 61-64.

[本文引用: 2]

周密林永波.

显色型环保除冰融雪剂的性能研究

[J]. 中国给排水, 2011271): 61-64.

[本文引用: 2]

Chen HualiangSha AiminJiang Weiet al.

Mechanical behaviors of asphalt mixtures in salt-wet-heat cycling

[J]. Journal of Highway and Transportation Research and Development, 20163312): 42-47.

陈华梁沙爱民蒋玮.

盐-湿-热循环条件下沥青混合料的力学行为特性

[J]. 公路交通科技, 20163312): 42-47.

Wang DongZhao FuqiangTian Zhongnanet al.

Preparation and effect of an environment-friendly snow-melting agent

[J]. Journal of Chongqing Jiaotong University(Natural Science), 2020396): 92-98.

王东赵富强田中男.

环保型路用融雪剂制备及其功效研究

[J]. 重庆交通大学学报(自然科学版), 2020396): 92-98.

Zhang YueweiHan GuangwenGao Hongdaet al.

Preparation and properties of efficient and environmentally composite calcium magnesium chloride agent for snow melting

[J]. Applied Chemical Industry, 20194812): 2937-2939.

张跃伟韩广文高宏达.

高效环保复合型氯化钙镁盐融雪剂的制备及性能研究

[J]. 应用化工, 20194812): 2937-2939.

Han YongpingGong PingLiu Hongmeiet al.

Environmental protection-type snow-melting agent from BFA compound

[J]. Modern Chemical Industry, 2016369): 80-83.

[本文引用: 1]

韩永萍龚平刘红梅.

环保型生化黄腐酸复合融雪剂的研究

[J]. 现代化工, 2016369): 80-83.

[本文引用: 1]

Giuliani FMerusi FPolacco Get al.

Effectiveness of sodium chloride-based anti-icing filler in asphalt mixtures

[J]. Construction and Building Materials, 201230174-179.

[本文引用: 1]

Liu ZhuangzhuangSha AiminXing Minglianget al.

Low temperature property and salt releasing characteristics of antifreeze asphalt concrete under static and dynamic conditions

[J]. Cold Regions Science and Technology, 20151149-14.

[本文引用: 2]

Tan YiqiuSun RongrongGuo Menget al.

Research on deicing performance of asphalt mixture containing salt

[J]. China Journal of Highway and Transport, 2013261): 23-29.

[本文引用: 1]

谭忆秋孙嵘蓉郭猛.

蓄盐沥青混合料除冰雪性能研究

[J]. 中国公路学报, 2013261): 23-29.

[本文引用: 1]

Xue ZhongjunWang ChunmingZhang Rongronget al.

Experimental study on pavement performances of anti-icing asphalt mixture

[J]. Journal of Highway and Transportation Research and Development, 2014311): 1-6.

[本文引用: 1]

薛忠军王春明张荣荣.

防冰沥青混合料路用性能试验研究

[J]. 公路交通科技, 2014311): 1-6.

[本文引用: 1]

Liu ZhuangzhuangSha AiminJiang Wei.

Advances in asphalt pavements containing salts:additives, mixtures,performances,and evaluation

[J]. China Journal of Highway and Transport, 2019324): 18-31.

[本文引用: 3]

刘状壮沙爱民蒋玮.

蓄盐沥青路面研究进展:盐化物材料、混合料及其性能与评价

[J]. 中国公路学报, 2019324): 18-31.

[本文引用: 3]

Peng ChaoYu JianyingZhao Zhijieet al.

Effects of a sodium chloride deicing additive on the rheological properties of asphalt mastic

[J]. Road Materials and Pavement Design, 2016172): 382-395.

Wu ShuyinYang JunSun Xiaoyinet al.

Preparation and characterization of anti-freezing asphalt pavement

[J]. Construction and Building Materials, 2020236117579.

[本文引用: 2]

Tan YanZhu YuntaoXiao Henglin.

Model experimental study of carbon fiber heating wire for deicing and snow melting on a bridge deck

[J]. Advances in Civil Engineering, 202020201-15.

[本文引用: 1]

Akbari SNour AHJamari SSet al.

Demulsification of water-in-crude oil emulsion via conventional heating and microwave heating technology in their optimum conditions

[J]. Australian Journal of Basic and Applied Sciences, 2016104): 66-74.

[本文引用: 2]

Wang ZhenjunGao JieAi Taoet al.

Laboratory investigation on microwave deicing function of micro surfacing asphalt mixtures reinforced by carbon fiber

[J]. Journal of Testing and Evaluation, 2014422): 498-507.

[本文引用: 2]

Jiao ShengjieTang XiangweiGao Ziyuet al.

Study of key technology on microwave deicing efficiency

[J]. China Journal of Highway and Transport, 2008216): 121-126.

[本文引用: 2]

焦生杰唐相伟高子渝.

微波除冰效率关键技术研究

[J]. 中国公路学报, 2008216): 121-126.

[本文引用: 2]

Gallego JVal M A DContreras Vet al.

Heating asphalt mixtures with microwaves to promote self-healing

[J]. Construction and Building Materials, 2013421-4.

[本文引用: 1]

Guan BowenLiu JiananZhao Huaet al.

Investigation of the microwave absorption of asphalt mixtures containing magnetite powder

[J]. Coatings, 2019912): 813813.

[本文引用: 2]

Liu ZimingYang XuWang Yongdanet al.

Engineering properties and microwave heating induced ice-melting performance of asphalt mixture with activated carbon powder filler

[J]. Construction and Building Materials, 201919750-62.

Gulisano FGallego J.

Microwave heating of asphalt paving materials: principles, current status and next steps

[J]. Construction and Building Materials, 2021278121993.

Wang ZhenjunWang HongfeiAn Dengdenget al.

Laboratory investigation on deicing characteristics of asphalt mixtures using magnetite aggregate as microwave-absorbing materials

[J]. Construction and Building Materials, 2016124589-597.

[本文引用: 1]

Sun YihanWu ShaopengLiu Quantaoet al.

Snow and ice melting properties of self-healing asphalt mixtures with induction heating and microwave heating

[J]. Applied Thermal Engineering, 2018129871-883.

[本文引用: 2]

Fakhri MJavadi SSedghi Ret al.

Microwave induction heating of polymer-modified asphalt materials for self-healing and deicing

[J]. Sustainability, 20211318): 10129.

[本文引用: 1]

Daniels J WHeymsfield ESaunders R Fet al.

Development of automated electrical heat grid for pavement snowmelt

[J]. Thermal Science and Engineering Progress, 201910169-178.

[本文引用: 1]

Daniels J WHeymsfield E.

Development of anti-icing airfield pavement using surface-embedded heat wire

[J]. International Journal of Pavement Engineering, 2020216): 725-735.

[本文引用: 1]

Liu ZhuangzhuangZhang YouweiJi Pengyuet al.

Study on heat transfer characteristics of electric heating snow melting

[J]. Journal of Jilin University(Engineering and Technology Edition), 2023532): 523-530.

[本文引用: 1]

刘状壮张有为季鹏宇.

电热型融雪沥青路面传热特性研究

[J]. 吉林大学学报(工学版), 2023532): 523-530.

[本文引用: 1]

Liu ZhuangzhuangZhang YouweiJi Pengyuet al.

Review on technology of electric heating snow-melting pavement

[J]. Journal of Chang’an University(Natural Science Edition), 2022423): 14-25.

[本文引用: 1]

刘状壮张有为季鹏宇.

电热型融雪路面技术研究综述

[J]. 长安大学学报(自然科学版), 2022423): 14-25.

[本文引用: 1]

Sha AiminLiu ZhuangzhuangJiang Weiet al.

Advances and development trends in eco-friendly pavements

[J]. Journal of Road Engineering, 202111): 1-42.

[本文引用: 1]

Su XinLai YongLiu Yanet al.

Research of deicing and melting snow on airport asphalt pavement by carbon fiber heating wire

[J]. Advances in Materials Science and Engineering, 202020201-6.

Zhao HongmingWang SonggenWu Zhiminet al.

Concrete slab installed with carbon fiber heating wire for bridge deck deicing

[J]. Journal of Transportation Engineering, 20101366): 500-509.

[本文引用: 1]

Mensah KChoi J M.

Review of technologies for snow melting systems

[J]. Journal of Mechanical Science and Technology, 20152912): 5507-5521.

[本文引用: 1]

Tan YiqiuZhang ChiHuijie et al.

Experimental and numerical analysis of the critical heating strategy for hydronic heated snow melting airfield runway

[J]. Applied Thermal Engineering, 202017813115508.

[本文引用: 1]

Ho I HLi ShengAbudureyimu S.

Alternative hydronic pavement heating system using deep direct use of geothermal hot water

[J]. Cold Regions Science and Technology, 2019160194-208.

[本文引用: 1]

Wang HuajunLiu LinboChen Zhihao.

Experimental investigation of hydronic snow melting process on the inclined pavement

[J]. Cold Regions Science and Technology, 2010631/2): 44-49.

[本文引用: 1]

Zhang RuixiaoxiaoShen G Q PNi Menget al.

Techno-economic feasibility of solar water heating system: overview and meta-analysis

[J]. Sustainable Energy Technologies and Assessments, 201830164-173.

[本文引用: 1]

Liu HongweiPooneh MaghoulAko Bahariet al.

Feasibility study of snow melting system for bridge decks using geothermal energy piles integrated with heat pump in Canada

[J]. Renewable Energy, 20191361266-1280.

[本文引用: 2]

Ho I H.

Optimization of hydronic heating pavement design using geothermal hot water in western north dakota

[J]. Geotechnical and Geological Engineering, 2021393): 2115-2130.

[本文引用: 2]

Wang QingyanLi Weizhong.

Research on snow-melting mechanism in solar-heat storage in soil snow-melting systems

[J]. Acta Energiae Solaris Sinica, 20082911): 1385-1389.

[本文引用: 1]

王庆艳李维仲.

太阳能-土壤蓄热融雪系统融雪机理的研究

[J]. 太阳能学报, 20082911): 1385-1389.

[本文引用: 1]

Xu HuiningTan YiqiuFu Zhongbinet al.

Study on snow melting performance in solar-ground source coupled snow-melting system for pavement

[J]. Acta Energiae Solaris Sinica, 2011329): 1391-1396.

[本文引用: 1]

徐慧宁谭忆秋傅忠斌.

太阳能-土壤源热能耦合道路融雪系统融雪性能的研究

[J]. 太阳能学报, 2011329): 1391-1396.

[本文引用: 1]

Xu HuiningWang DaweiTan Yiqiuet al.

Investigation of design alternatives for hydronic snow melting pavement systems in China

[J]. Journal of Cleaner Production, 20181701413-1422.

[本文引用: 2]

Rao RuiFu JiyangYijen Chanet al.

Steel fiber confined graphite concrete for pavement deicing

[J]. Composites Part B-Engineering, 2018155187-196.

Segundo I RFreitas EBranco V T F Cet al.

Review and analysis of advances in functionalized, smart, and multifunctional asphalt mixtures

[J]. Renewable & Sustainable Energy Reviews, 2021151111552.

Zhang YanLiu ZhuangzhuangShi Xianming.

Development and use of salt-storage additives in asphalt pavement for anti-icing: literature review

[J]. Journal of Transportation Engineering Part B-Pavements, 20211474): 03121002.

Liu ZhuangzhuangXing MingliangChen Shuanfaet al.

Influence of the chloride-based anti-freeze filler on the properties of asphalt mixtures

[J]. Construction and Building Materials, 201451133-140.

[本文引用: 2]

Chen Chaomei.

CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature

[J]. Journal of the American Society for Information Science and Technology, 2006573): 359-77.

[本文引用: 1]

Chen ChaomeiAssoc Comp M.

Visualizing and exploring scientific literature with CiteSpace

[C]// Chiir’18: Proceedings of the 2018 Conference on Human Information Interaction & RetrievalASSOC COMPUTING MACHINERY2018369-370.

[本文引用: 1]

Chen Chaomei.

Science mapping: a systematic review of the literature

[J]. Journal of Data and Information Science, 201722): 1-40.

[本文引用: 1]

Jiao ShengjieTang XiangweiGao Ziyuet al.

Influence of environmental temperature on road de-icing efficiency using microwave

[J]. Journal of Chang’an University(Natural Science Edition), 2008286): 85-88.

[本文引用: 1]

焦生杰唐相伟高子渝.

环境温度对道路微波除冰效率的影响

[J]. 长安大学学报(自然科学版), 2008286): 85-88.

[本文引用: 1]

Tang XiangweiJiao ShengjieGao Ziyuet al.

Efficiency analysis on microwave-enabled road deicing in winter

[J]. Chinese Journal of Construction Machinery, 2008, (1): 105-110.

[本文引用: 1]

唐相伟焦生杰高子渝.

冬季道路微波除冰效率研究

[J]. 中国工程机械学报, 2008, (1): 105-110.

[本文引用: 1]

Ji KuoXiong RuiLi Kehonget al.

Research progress on the performance of induction heating asphalt mixture for melting snow and deicing

[J]. Applied Chemical Industry, 2021502): 450-454.

[本文引用: 1]

纪括熊锐李科宏.

感应加热沥青混合料融雪化冰性能研究进展

[J]. 应用化工, 2021502): 450-454.

[本文引用: 1]

Chen YuanzhaoLi ZhenxiaZhao Chen’aoet al.

Coating material for environmental sustained release active melting of ice and snow

[J]. China Journal of Highway and Transport, 2020339): 155-167.

陈渊召李振霞赵晨奥.

环保缓释型主动融冰雪涂层材料研究

[J]. 中国公路学报, 2020339): 155-167.

Wang JianyingWang XuancangDing Longtinget al.

Microwave sensitive coating materials and equipment for snow removal

[J]. Journal of Chang’an University(Natural Science Edition), 2018385): 49-57.

王剑英王选仓丁龙亭.

除雪化冰路面微波敏感涂层材料与设备

[J]. 长安大学学报(自然科学版), 2018385): 49-57.

Chen ShuanfaLiu ZhuangzhuangXing Minglianget al.

Research on the factors influencing hydrophobic properties of antifreezing material

[J]. Journal of Building Materials, 2013166): 1053-1057.

陈拴发刘状壮邢明亮.

融雪抑冰材料疏水性能影响因素研究

[J]. 建筑材料学报, 2013166): 1053-1057.

Peng YuhuaBao MengjieChen Shaohui.

Current situation and development of deicing technology with built-in carbon-fiber heating wires

[J]. Road Machinery & Construction Mechanization, 2016332): 29-33.

[本文引用: 1]

彭余华鲍梦捷陈绍辉.

内置碳纤维发热线融冰技术的现状与发展

[J]. 筑路机械与施工机械化, 2016332): 29-33.

[本文引用: 1]

Wang HaopengZhang YueZhang Yiet al.

Laboratory and numerical investigation of microwave heating properties of asphalt mixture

[J]. Materials, 2019121): 146146.

[本文引用: 1]

Wang XuhaoSadati STaylor Pet al.

Material characterization to assess effectiveness of surface treatment to prevent joint deterioration from oxychloride formation mechanism

[J]. Cement & Concrete Composites, 2019104103394.

[本文引用: 1]

Zhang ZhengqiLiu HengbinZhang Kaiwenet al.

Preparation of super-hydrophobic anti-icing coating for asphalt pavement and evaluation of its anti-icing properties

[J]. Journal of Materials in Civil Engineering, 2021333): 04021004.

[本文引用: 1]

Chen MingyuWu ShaopengZhang Jizheet al.

Design and performance of an asphalt pavement snow melting system

[C] //International Conference on Materials, Mechatronics and AutomationPts 1-320111550-1555.

[本文引用: 1]

Wu ShaopengLi BoPan Panet al.

Simulation study of heat energy potential of asphalt solar collectors

[J]. Materials Research Innovations, 201418436-439.

[本文引用: 1]

Pan PanSun ChangjunTang Ninget al.

Study on volume performance of conductive asphalt concrete based on freeze-thaw cycle

[C]//International Conference on Sensors, Measurement and Intelligent MaterialsPts 1-4, Trans Tech Publications Ltd., 20132501-2504.

[本文引用: 1]

Gao JieSha AiminWang Zhenjunet al.

Utilization of steel slag as aggregate in asphalt mixtures for microwave deicing

[J]. Journal of Cleaner Production, 2017152429-442.

[本文引用: 1]

Gao JieGuo HaoyanWang Xiaofenget al.

Microwave deicing for asphalt mixture containing steel wool fibers

[J]. Journal of Cleaner Production, 20192061110-1122.

[本文引用: 1]

Xu HuiningTan Yiqiu.

Development and testing of heat-and mass-coupled model of snow melting for hydronically heated pavement

[J]. Transportation Research Record, 201222822282): 14-21.

[本文引用: 1]

Xu HuiningTan YiqiuSpitler J D.

Study on the heat and mass coupled snow melting model for solar-ground source coupled heated pavement

[J]. Acta Energiae Solaris Sinica, 2014355): 802-808.

[本文引用: 1]

徐慧宁谭忆秋Spitler J D.

太阳能-土壤源热能流体加热道路融雪系统融雪模型的建立

[J]. 太阳能学报, 2014355): 802-808.

[本文引用: 1]

Xu HuiningTan YiqiuZhou Chunxiu.

Simulation analysis of snow melting characteristics of solar-ground source coupled snow-melting system for pavement

[J]. Acta Energiae Solaris Sinica, 2015364): 955-962.

[本文引用: 1]

徐慧宁谭忆秋周纯秀.

太阳能-土壤源热能复合道路融雪系统融雪特性的仿真分析

[J]. 太阳能学报, 2015364): 955-962.

[本文引用: 1]

Liu KaiHuang SiluJin Canet al.

Prediction models of the thermal field on ice-snow melting pavement with electric heating pipes

[J]. Applied Thermal Engineering, 2017120269-276.

[本文引用: 1]

Liu KaiWang FangWang Xuancang.

Influence factor of thermal conductivity of cement concrete and its prediction model

[J]. Journal of Building Materials, 2012156): 771-777.

[本文引用: 1]

刘凯王芳王选仓.

水泥混凝土导热性能影响因素及预估模型研究

[J]. 建筑材料学报, 2012156): 771-777.

[本文引用: 1]

Liu KaiXu PeixinWang Fanget al.

The accumulated stress damage and residual life prediction of unreinforced concrete pavement with electric heating pipes

[J]. Construction and Building Materials, 20212785/6): 1-13.

[本文引用: 1]

Liu KaiXie HongzhouJin Canet al.

The equivalent plasticity strain analysis of snow-melting heated pavement concrete exposed to inner elevated temperatures

[J]. Construction and Building Materials, 201713766-75.

[本文引用: 1]

Liu KaiHuang SiluXie Hongzhouet al.

Multi-objective optimization of the design and operation for snow-melting pavement with electric heating pipes

[J]. Applied Thermal Engineering, 2017122359-367.

[本文引用: 2]

Liu KaiFu ChaoliangXie Hongzhouet al.

Design of electric heat pipe embedding schemes for snow-melting pavement based on mechanical properties in cold regions

[J]. Cold Regions Science and Technology, 2019165102806.

[本文引用: 1]

Gao YingliQu LiangchenHe Beiet al.

Study on effectiveness of anti-icing and deicing performance of super-hydrophobic asphalt concrete

[J]. Construction and Building Materials, 2018191270-280.

[本文引用: 1]

Jiao WenxiuSha AiminLiu Zhuangzhuanget al.

Optimization design and prediction of the snow-melting pavement based on electrical-thermal system

[J]. Cold Regions Science and Technology, 2022193103406.

[本文引用: 1]

Peng ChaoyiChen ZhuyangTiwari M K.

All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance

[J]. Nature Materials, 2018174): 355-360.

[本文引用: 1]

Peng ChaoChen PengxuYou Zhanpinget al.

The anti-icing and mechanical properties of a superhydrophobic coating on asphalt pavement

[J]. Construction and Building Materials, 201819083-94.

[本文引用: 1]

Zhao WenkeZhang YaningLi Leiet al.

Snow melting on the road surface driven by a geothermal system in the severely cold region of China

[J]. Sustainable Energy Technologies and Assessments, 2020407100781.

[本文引用: 1]

Li TengYu XinbaoLei Ganget al.

Numerical analyses of a laboratory test of a geothermal bridge deck externally heated under controlled temperature

[J]. Applied Thermal Engineering, 202017415115255.

[本文引用: 1]

Saleh N FZalghout A ADin Set al.

Design, construction, and evaluation of energy-harvesting asphalt pavement systems

[J]. Road Materials and Pavement Design, 2020216): 1647-1674.

[本文引用: 1]

Ghosh AGanguly RSchutzius T Met al.

Wettability patterning for high-rate, pumpless fluid transport on open, non-planar microfluidic platforms

[J]. Lab on a Chip, 2014149): 1538-1550.

[本文引用: 1]

Zhi DanfengLu YaoSathasivam Set al.

Large-scale fabrication of translucent and repairable superhydrophobic spray coatings with remarkable mechanical, chemical durability and UV resistance

[J]. Journal of Materials Chemistry A, 2017521): 10622-10631.

Song JinlongLi YuxiangXu Weiet al.

Inexpensive and non-fluorinated superhydrophobic concrete coating for anti-icing and anti-corrosion

[J]. Journal of Colloid and Interface Science, 201954186-92.

[本文引用: 1]

Pan PanWu ShaopengXiao Yueet al.

A review on hydronic asphalt pavement for energy harvesting and snow melting

[J]. Renewable & Sustainable Energy Reviews, 201548624-634.

[本文引用: 1]

Blomqvist SAmiri SRohdin Pet al.

Analyzing the performance and control of a hydronic pavement system in a district heating network

[J]. Energies, 20191211): 1-23.

[本文引用: 1]

Schuler M SHintz W DJones D Ket al.

How common road salts and organic additives alter freshwater food webs: in search of safer alternatives

[J]. Journal of Applied Ecology, 2017545): 1353-1361.

[本文引用: 1]

/