[1] Conrad R. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO)[J]. Microbiology and Molecular Biology Reviews, 1996, 60(4): 609-640.[2] Shoun H, Kim Du-Hyun, Uchiyama H, et al. Denitrification by fungi[J]. FEMS Microbiology Letters, 1992, 94(3): 277-281.[3] Treseder K K. Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies[J]. Ecology Letters, 2008, 11(10): 1111-1120.[4] Hu Ping, Wu Xiukun, Li Shiweng, et al. Progress of studies on permafrost microbial ecology in the past 10 years[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 732-739. [胡平, 伍修锟, 李师翁, 等. 近10 a来冻土微生物生态学研究进展[J]. 冰川冻土, 2012, 34(3): 732-739.][5] Voosen P. Even when frozen, soils get busy emitting CO2. New York Times, (2010-11-29). http://www.nytimes.com/gwire/2010/11/29/29greenwire-even-when-frozen-soils-get-busy-emitting-co2-77544.html?pagewa-nted=all.[6] Expertanswer. Microorganisms in the ground don't slack off in winter. Science News, (2010-11-20). http://www.sciencedaily.com/releases/2010/11/1011160938 27.htm.[7] Uchida M, Mo Wenhong, Nakatsubo T, et al. Microbial activity and litter decomposition under snow cover in a cool-temperate broad-leaved deciduous forest[J]. Agricultural and Forest Meteorology, 2005, 134(1/4): 102-109.[8] Monson R K, Lipson D L, Burns S P. Winter forest soil respiration controlled by climate and microbial community composition[J]. Nature, 2006, 439: 711-714.[9] Ping C L, Michaelson G J, Kimble J M. Carbon storage along a latitudinal transect in Alaska[J]. Nutrient Cycling in Agroecosystems, 1997, 49: 235-242.[10] Gilichinsky D A. Permafrost model of extraterrestrial habitat[M][C]//Horneck G, Baumstark-Khan C. Astrobiology: The Quest for the Conditions of Life. Berlin: Springer, 2002: 125-142.[11] Wang Lu, Dong Xiaopei, Zhang Wei, et al. Quantitative characters of microorganisms in permafrost at different depths and their relation to soil physicochemical properties[J]. Journal of Glaciology and Geocryology, 2011, 33(2): 436-441. [王鹭, 董小培, 张威, 等. 不同深度冻土微生物数量特征及其与土壤理化性质的关系[J]. 冰川冻土, 2011, 33(2): 436-441.][12] Wang Jiaoyue, Song Changchun, Wang Xianwei, et al. Progress in the study of effect of freeze-thaw processes on the organic carbon pool and microorganisms in soils[J]. Journal of Glaciology and Geocryology, 2011, 33(2): 442-452. [王娇月, 宋长春, 王宪伟, 等. 冻融作用对土壤有机碳库及微生物的影响研究进展[J]. 冰川冻土, 2011, 33(2): 442-452.][13] Yang Sizhong, Jin Huijun. Physiological and ecological effects of freezing and thawing processes on microorganisms in seasonally-frozen ground and in permafrost[J]. Acta Ecologica Sinica, 2008, 28(10): 5065-5074. [杨思忠, 金会军. 冻融作用对冻土区微生物生理和生态的影响[J]. 生态学报, 2008, 28(10): 5065-5074.][14] Li Miao, Feng Haiyan, Yang Zhongfang, et al. Diversity of culturable bacteria in the typical frozen soil areas in China[J]. Acta Microbiologica Sinica, 2011, 51(12): 1595-1604. [李淼, 冯海艳, 杨忠芳, 等. 中国典型冻土区土壤可培养细菌多样性[J]. 微生物学报, 2011, 51(12): 1595-1604.][15] Hinsa-Leasure S M, Bhavaraju L, Rodrigues J L M, et al. Characterization of a bacterial community from a Northeast Siberian seacoast permafrost sample[J]. Microbiology Ecology, 2010, 74(1): 103-113.[16] Zhang Baogui, Zhang Wei, Liu Guangxiu, et al. Effect of freeze-thaw cycles on the soil bacterial communities in different ecosystem soils in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2012, 34(6): 1499-1507. [张宝贵, 张威, 刘光 , 等. 冻融循环对青藏高原腹地不同生态系统土壤细菌群落结构的影响[J]. 冰川冻土, 2012, 34(6): 1499-1507.][17] Lydolph M C, Jacobsen J, Arctander P, et al. Beringian paleoecology inferred permafrost-preserved fungal DNA[J]. Applied and Environmental Microbiology, 2005, 71(2): 1012-1017.[18] Chen Shujiang, Hou Ping, Li Wenhua, et al. Comprehensive Scientific Survey in Aibi Lake Wetlands Nature Reserve[M]. Ürümq: Xinjiang Science and Technology Press, 2007.[19] Wang Zhigang. Strong blizzard raid Toto townshipin Jinghe and the snow thickness is more than 60 cm[EB/OL]. Bortala Government Net (xjboz.gov.cn), (2010-02-25). http://www.xjboz.gov.cn/html/2010-02/10-02-25-TV3I.html. [王志刚. 强暴雪突袭精河县托托乡降雪厚度已超过60厘米. 博尔塔拉政府网(xjboz.gov.cn), (2010-02-25)[2011-04-03]. http://www.xjboz.gov.cn/html/2010-02/10-02-25-TV3I.html.][20] Shen Ping, Fan Xiurong, Li Guangwu. Microbiology Experiments[M]. Beijing: Higher Education Press, 2003: 50-100.[21] Zhang Jia'en. Common Experimental Study Methods and Techniques on Ecology[M]. Beijng: Chemical Industry Press, 2007: 218-222.[22] Institute of Soil Science, Chinese Academy of Sciences. Physical and Chemical Analysis of Soil[M]. Shanghai: Shanghai Science and Technology Press, 1977.[23] Yang Wanqin, Wu Fuzhong, Zhang Jian. Advances in wintertime ecological process in the seasonal frozen area[C]//Dong Ming, Werger J W. A Spectrum of Ecological Studies. Chongqing: Southwest China Normal University Press, 2009: 269-274. [杨万勤, 吴福忠, 张健. 季节性冻土区冬季生态过程研究进展[C]//董鸣, 维尔格. 生态学文集: 贺钟章成教授80华诞. 重庆: 西南师范大学出版社, 2009: 269-274.][24] Li Junfeng, Yang Jianwen, Yang Tingting, et al. Seasonal dynamics of soil microbes and their relationship with soil physicochemical factors in alpine meadow in Maqu of Gansu[J]. Pratacultural Science, 2012, 29(2): 189-197. [李君锋, 杨建文, 杨婷婷, 等. 甘肃玛曲高寒草甸土壤微生物季节变化特性的研究[J]. 草业科学, 2012, 29(2): 189-197.][25] Wang Yinshan, Zhang Yan, Xie Hui, et al. The analysis of characteristics of the soil microorganisms in different saline and alkali environment in Aibi Lake Wetland[J]. Journal of Arid Land Resources and Environment, 2009, 23(5): 133-137. [王银山, 张燕, 谢辉, 等. 艾比湖湿地不同盐碱环境土壤微生物群落特征分析[J]. 干旱区资源与环境, 2009, 23(5): 133-137.][26] Liu Chunlin, Zuo Weiying, Zhao Zengyang, et al. Bacterial diversity of different successional stage forest soils in Dinghushan[J]. Acta Microbiologica Sinica, 2012, 52(12): 1489-1496. [柳春林, 左伟英, 赵增阳, 等. 鼎湖山不同演替阶段森林土壤细菌多样性[J]. 微生物学报, 2012, 52(12): 1489-1496.][27] Zak D R, Grigal D R, Gleeson S, et al. Carbon and nitrogen cycling during old-field succession: Constraints on plant and microbial biomass[J]. Biogeochemistry, 1990, 11: 111-129.[28] Zak D R, Tilman D, Parmenter R R, et al. Plant production and soil microorganisms in late-successional ecosystems: A continental scale study[J]. Ecology, 1994, 75: 2333-2347.[29] Delhaize E, Hebb D M, Ryan P R. Expression of a Pseudomonas aeruginosacitrate synthase gene in tobacco is not associated with either enhanced citrate accumulation or efflux[J]. Plant Physiology, 2001, 125(4): 2059-2067.[30] Liu Guangxiu, Dong Xiaopei, Zhang Wei, et al. The changing mechanisms of microbial number on surface soil with altitude[J]. Journal of Glaciology and Geocryology, 2010, 32(6): 1170-1174. [刘光 , 董小培, 张威, 等. 不同海拔表层土壤微生物数量消长的机理[J]. 冰川冻土, 2010, 32(6): 1170-1174.][31] Wan Hongwei. Responses of Plant Traits and Soil Microbial Biomass C, N, P to Nitrogen Addition in Mature and Degraded Leymus chinensisSteppe Ecosystems in Inner Mongolia Plateau[D]. Master Thesis, Beijing: Institute of Botany, Chinese Academy of Sciences, 2006. [万宏伟. 内蒙古高原成熟和退化羊草草原群落物种功能特性与土壤微生物量C、 N、 P对氮素添加响应[D]. 硕士论文, 北京: 中国科学院植物研究所, 2006.][32] Wang Sujuan, Su He, Gao Li. The preliminary research on soil microorganism quantity at Kubuqi Sandland[J]. Chinese Journal of Grassland, 2008, 30(6): 89-93. [王素娟, 苏和, 高丽. 库布齐沙地土壤微生物数量初步研究[J]. 中国草地学报, 2008, 30(6): 89-93.][33] Yang Sizhong, Jin Huijun, Wei Zhi, et al. Microbial adaptation to the habitat of permafrost and their responses to global change and engineering disturbance in cold regions: Advances and prospects[J]. Journal of Glaciology and Geocryology, 2007, 29(2): 279-285. [杨思忠, 金会军, 魏智, 等. 微生物对冻土生境的适应以及对全球变化和寒区工程扰动的响应: 进展与展望[J]. 冰川冻土, 2007, 29(2): 279-285.][34] Zeng Yinxin, Yu Yong, Cai Minghong, et al. A survey on cold-adapted microorganisms and their enzymes[J]. Journal of Microbiology, 2004, 24(5): 83-88. [曾胤新, 俞勇, 蔡明宏, 等. 低温微生物及其酶类的研究概况[J]. 微生物学杂志, 2004, 24(5): 83-88.][35] Zhang Xiang, Zhu Hongxun, Sun Chunhe, et al. Effects of long-term fertilizer application on soil microorganisms and humus compositions[J]. Acta Agriculturae Boreali-Sinica, 1998, 13(2): 87-92. [张翔, 朱洪勋, 孙春河, 等. 长期施肥对土壤微生物和腐殖质组分的影响[J]. 华北农学报, 1998, 13(2): 87-92.][36] Ray M K, Kumar G S, Shivaji S. Phosphorylation of membrane proteins in response to temperature in an Antarctic Pseudomonas syringae[J]. Microbiology, 1994, 140(12): 3217-3223.[37] Zhang Gaosen. Microbial Diversity in the Qinghai-Tibet Plateau Permafrost Region and Its Potential Applications[M]. PhD Thesis, Lanzhou: Lanzhou University, 2007.[38] Li Changming, Zhang Xinfang, Zhao Lin, et al. Phylogenetic diversity of bacteria isolates and community function in permafrost-affected soil along different vegetation types in the Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 713-725. [李昌明, 张新芳, 赵林, 等. 青藏高原多年冻土区土壤需氧可培养细菌多样性及群落功能研究[J]. 冰川冻土, 2012, 34(3): 713-725.][39] Li Gang, Zhao Jianning, Yang Dianlin. Effects of glyphosate resistant transgenic soybean on bacterial diversity in rhizospheric soil[J]. Chinese Agricultural Science Bulletin, 2011, 27(1): 100-104. [李刚, 赵建宁, 杨殿林. 抗草甘膦转基因大豆对根际土壤细菌多样性的影响[J]. 中国农学通报, 2011, 27(1): 100-104.][40] Romaniuk R, Giuffré L, Costantini A, et al. Assessment of soil microbial diversity measurements as indicators of soil functioning in organic and conventional horticulture systems[J]. Ecological Indicators, 2011, 11(5): 1345-1353.[41] Oztas T, Fayetorbay F. Effect of freezing and thawing processes on soil aggregate stability[J]. Catena, 2003, 52(1): 1-8.[42] Sharma S, Szele Z, Schilling R, et al. Influence of freeze-thaw stress on the structure and function of microbial communities and denitrifying populations in soil[J]. Applied and Environmental Microbiology, 2006, 72(3): 2148-2154.[43] Yao Huaiying, He Zhenli, Huang Changyong. Phospholipid fatty acid profiles of Chinese red soils with varying fertility levels and land use histories[J]. Pedosphere, 2001, 11(2): 97-103.[44] Zhou Jing, Sheng Hongmei, An Lizhe. Diversity of extremophilic microorganisms and their applications[J]. Journal of Glaciology and Geocryology, 2007, 29(2): 286-291. [周 , 盛红梅, 安黎哲. 极端微生物的多样性及应用[J]. 冰川冻土, 2007, 29(2): 286-291.][45] Mnnist M K, Tiirola M, Hggblom M M. Effect of freeze-thaw cycles on bacterial communities of Arctic tundra soil[J]. Soil Microbiology, 2009, 58(3): 621-631.[46] Dong Kang, Li Shiweng, Kang Wenlong, et al. Study of the changes in microbe amount and its affect factors in the soils along the Qinghai-Tibet Highway[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 457-464. [董康, 李师翁, 康文龙, 等. 青藏公路沿线土壤微生物数量变化及其影响因素研究[J]. 冰川冻土, 2013, 35(2): 457-464.][47] Zhang Ping, Feng Zhili. Biological nutrient cycling of secondary forests in Xishuangbanna[J]. Acta Pedologica Sinica, 1997, 34(4): 418-426. [张萍, 冯志立. 西双版纳热带雨林次生林的生物养分循环[J]. 土壤学报, 1997, 34(4): 418-426.][48] Larsen K S, Jonasson S, Michelsen A. Repeated freeze-thaw cycles and their effects on biological processes in two arctic ecosystem types[J]. Applied Soil Ecology, 2002, 21(3): 187-195.[49] Schimel J P, Bilbroigh C, Welker J M. Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities[J]. Soil Biology & Biochemistry, 2004, 36(2): 217-227.[50] Mackie A E, Wheatley R E. Effects and incidence of volatile organic compound interactions between soil bacterial and fungal isolates[J]. Soil Biology & Biochemistry, 1999, 31(3): 375-385. |