新疆地区冰川、积雪广泛分布,在其融水补给河川径流的同时,也常伴有冰川洪水、融雪洪水、冰湖突发洪水、冰川泥石流、冰雪崩和风吹雪等冰雪灾害发生,这些灾害对当地居民居住地以及重要国防干线的安全运营形成较大威胁. 冰川、积雪变化直接影响到冰雪灾害发生的程度与影响范围,新疆的冰川洪水和冰湖突发洪水灾害主要发生在塔里木河流域的喀喇昆仑山、昆仑山以及天山南坡西部一带,融雪洪水灾害主要发生在新疆北部的阿勒泰地区、塔城地区和天山北坡一带,冰川泥石流、冰雪崩灾害主要发生在帕米尔高原、天山西段和西昆仑山地区,风吹雪主要在天山中、西段地区. 随着全球气候变暖,尤其是新疆从1987年开始的气候由暖干向暖湿的转型,冰川退缩加剧,融水量增大,冰川洪水和冰川泥石流灾害随着冰川融水径流的增加而增多;而融雪洪水、雪崩和风吹雪随着气候变化引起的冬季积雪增加和气温升高,其灾害强度在增强;冰崩灾害随着气温升高引起的高山冰体崩解而呈增加趋势. 在新疆地区,冰雪灾害主要表现为冰雪洪水,已观测到近十几年来在气候变化影响下冰雪洪水发生的频次和强度有增加的趋势,塔里木河流域的冰湖溃决洪水和冰川洪水及北疆春季的冰凌和融雪洪水已对当地的生命财产和社会经济发展带来巨大危害,新疆的水资源安全、灾害等问题日益凸显. 预计未来,随着气候增温引起的冰雪融水径流的增加,相关的冰雪灾害增多,因而增加了冰雪灾害的危险程度,并可能形成若干新的灾害点. 面对气候变化诱发的众多冰川、积雪灾害,目前还缺乏对灾害监测、预测预警方面的适应对策. 因此,在全球气候变化不断加速的趋势下,冰雪灾害应引起有关方面的足够重视,加强气候变化对冰雪灾害的影响评估和适应性管理对策研究,使科学技术在减灾方面发挥主导作用.
基于青藏高原昆仑山玉珠峰冰川Core 1冰芯钻取过程中所获得的相关资料,揭示出在该冰芯钻取点处的冰川内部34.34~34.64 m深度段存在一个富含水冰层,其未冻水(液态水)具有承压性质,水头高度至少可达到8.54 m. 该富含水冰层的存在不仅对冰川温度场带来了极大的影响,而且使该层中δ18O记录趋于均一化. 通过分析,揭示出该富含水冰层中可溶杂质离子浓度明显高于其上部冰层中的可溶杂质离子浓度,这是富含水冰层在形成初期其上部粒雪层融水下渗所引起的可溶杂质离子淋溶的结果. 同时,研究表明玉珠峰冰川粒雪中可溶杂质离子的优先淋溶顺序为NO3-> Mg2+> Na+> Cl-> K+> SO42-> Ca2+> NH4+. 提出可利用最易淋溶离子的浓度与最不易淋溶离子的浓度之比值,来判断冰雪层中可溶杂质离子浓度峰值是否与淋溶有关. 结合青藏高原其他地点冰芯钻取过程中发现的富含水冰层状况,认为青藏高原冰川内部富含水冰层不是在整个冰川区域内呈层状分布,而是在冰川内部呈透镜状分布. 冰川内部富含水冰层的存在,表明其形成初期气候相对较暖. 最后,阐明了青藏高原冰川中富含水冰层的形成机理与演化过程,并预测了其潜在的灾害效应.
气候冷暖变化问题是全球科学家研究的一个聚焦点,但高海拔地区的气候变化过程尚不十分清楚,作为全球气候变化的敏感区的青藏高原更是如此. 以青藏高原北部的古里雅冰芯、唐古拉冰芯和南部的达索普冰芯、宁金岗桑冰芯δ18O记录作为温度代用指标,同时结合青藏高原西北缘的吉尔吉斯斯坦Naryn站长期气象记录和北半球同时期的气温变化进行比较,研究了过去100 a来青藏高原北部和南部的温度变化. 结果显示:青藏高原过去100 a来共出现1910年左右、1920年左右、1950年左右、1970年代4个冷期,各冷期之间对应出现4次暖期,并且变冷的程度越来越弱而变暖的程度越来越强. 其次,青藏高原气候的变冷变暖在不同地区和不同时段差异很大:从空间尺度上看,青藏高原北部变暖过程比南部更强烈;从时间尺度上看,1910年左右和1920年左右的两次变冷十分明显,但1950年左右和1970年代的两次变冷不明显. 另外,虽然有发生在1990年代早期的短暂降温过程,但与其说是一个冷事件,还不如说是一次变暖过程中的短暂停顿,随后表现为持续升温.
巴基斯坦喀喇昆仑山的Ghulkin冰川是距离中国-巴基斯坦喀喇昆仑公路最近的典型冰川之一,其冰川的进退变化影响着喀喇昆仑公路改建工程的线路设计与工程施工.为了追溯Ghulkin冰川的活动历史和查明近期进退变化,对过去200 a的相关文献和记录进行统计分析,并开展了2008-2011年野外定点观测,总结与分析了Ghulkin冰川冰舌的活动历史与近期变化.研究表明:Ghulkin冰川在1885-1980年近百年间经历了3次前进和3次后退,在此期间冰川波动了625 m;1913-1925年冰川处于显著的前进状态,1966-1978年冰川有小段距离的前进;2008-2011年K676+660处泥石流沟道逐年抬升,2011年南坡冰川融水由K676+660改道至K676+450;2010年的南坡冰舌较1994年后退了300余米,2011年的南坡冰舌较2010年后退了15.066 m,可见在2010-2011年期间冰川处于局部短期后退状态. 中巴公路冰川泥石流等灾害不但受区域气候的影响,而且还受冰川变化的影响.未来气候变暖将会导致冰川的强烈消融和后退,冰川融水携带大量冰碛体,形成大型的冰川泥石流,对公路的安全运营造成严重威胁.
通过2007-2011年纳木错站人工积雪观测资料,对西藏纳木错流域MODIS两种积雪产品(MOD10A1和MOD10A2)进行了精度验证,分析了纳木错流域积雪累积和消融的空间差异,以及流域积雪覆盖率的时空变化;利用纳木错站人工积雪观测资料及自动气象站资料,分析了纳木错流域积雪要素(积雪深度、雪水当量、积雪密度)的时间变化及其与气候参数(气温、降水量、风速等)的关系.结果表明:纳木错流域MOD10A2数据的积雪识别精度(67.1%)高于MOD10A1(42.2%),总识别精度(73.0%)略低于MOD10A1数据(78.4%).纳木错流域积雪累积和消融存在空间差异,积雪在流域南部的念青唐古拉山脉最先累积,之后为流域东部,最后为流域西部;积雪消融的空间变化则相反.由此导致流域积雪日数南部最大、东部次之、西部及西北部最小.纳木错流域各积雪要素的年内变化存在双峰值特征,峰值分别出现在10-11月和1月,积雪在10-11月受降水和气温共同作用,12月至次年3月主要受气温影响.纳木错流域的平均积雪覆盖率为21.9%,受湖泊效应影响区域(主要为东部地区)达到50.6%,而其他区域仅为18.3%.同时,受湖泊效应影响,纳木错平均积雪深度、积雪水当量均显著大于周边地区.
利用覆盖新疆大部分地区资料完整的93个站点资料,对1961-2005年新疆地区最大冻土深度进行了分析. 结果表明:新疆地区月最大冻土深度有明显的季节变化,低海拔区域(海拔<1 800 m)最大值出现在1月份,而高海拔区域(海拔≥1 800 m)的最大值出现在2月份,比低海拔区域要滞后. 新疆地区最大冻土深度的地理分布特征表现为北疆深于南疆,山区深于平原,且与气温的分布有很好的一致性. 全年和冬、春季最大冻土深度与气温场的空间相关系数分别为-0.795、-0.736和-0.848. 年际变化表明,近45 a来的最大冻土深度出现了较为明显的下降. 高海拔区域与低海拔区域年最大冻土深度的倾向率分别为-15.65 cm·(10a)-1和-9.48 cm·(10a)-1,且与气温的相关系数分别为-0.51和-0.69,均通过了0.001的信度检验. 同时发现,高海拔区域冬季下降多,而低海拔区域春季下降多. 新疆地区年最大冻土深度在近45 a有明显的突变现象,高海拔区域和低海拔区域突变发生年份分别为1996/1997年度和1978/1979年度,说明新疆地区高海拔区域的年最大冻土深度对气温变化的响应比低海拔区域要滞后. 突变年后高海拔区域与低海拔区域年最大冻土深度比突变年前的平均值分别降低了61.12 cm和26.67 cm.
基于新疆96个气象站1961-2010年的逐日平均气温和冻土深度资料,使用线性趋势分析、Mann-Kendall检测以及基于ArcGIS的混合插值法,对新疆冬季负积温和季节性最大冻土深度的时空变化及其相互关系进行了分析. 结果表明:50 a来,新疆冬季负积温绝对值总体以51.5 ℃·d·(10a)-1的倾向率减少,并于1985年发生了突变. 受其影响,最大冻土深度以-3.5 cm·(10a)-1的倾向率减小,也于1988年发生了突变. 就全疆平均而言,1961-2010年,负积温每减少100 ℃·d,最大冻土深度将减小4.6 cm.但这种影响区域性差异显著,最大冻土深度减小量呈现"南疆小,北疆和天山山区大"的格局.南疆大部最大冻土深度对负积温变化的响应相对较敏感,一般为-3.0~-12.7 cm·(100℃·d)-1;北疆和天山山区响应的敏感性较小,多为0.0~-4.9 cm·(100℃·d)-1,其成因很可能是北疆和天山山区冬季积雪较南疆厚,较厚的积雪所具有的低导热性和较大的容积热容减小了气候变暖对冻土热状况的影响.负积温减少、最大冻土深度变浅将改变土壤的水热物理性状,加剧土壤干化、草场退化以及土地的荒漠化,对新疆脆弱的生态环境产生更加不利的影响.因此,应根据最大冻土深度对负积温变化响应的实际,采取趋利避害的技术措施积极应对.
祁连山东段冷龙岭北坡冰川融水是河西走廊重要的水源补给,然而却少有现代冰川运动观测资料. 通过在该区域宁缠河1号和水管河4号冰川布设花杆,观测了冰川表面的运动速度. 结果表明:2010-2012年,面积较大的水管河4号冰川表面年平均运动速度(5.2 m·a-1)要高于面积相对较小的宁缠河1号冰川(2.8 m·a-1). 水管河4号冰川最大运动速度出现在花杆观测区域的最上部(接近物质平衡线),宁缠河1号冰川最大运动速度出现在坡度较大的区域,说明冰川最大运动速度通常出现在平衡线附近,但还要考虑坡度等地形因素的影响. 较之早期的观测资料,水管河4号和其他中国西部地区冰川的运动速度呈现出减缓趋势,可能是物质平衡持续亏损导致冰川厚度变薄的直接结果.
冻土的脆弱性是指冻土对气候变化的脆弱性,是冻土易受气候变化,尤其是温度变化不利影响的程度. 研究冻土对气候变化的脆弱性是提高对自然生态系统、工程系统、生态-社会-经济系统对冻土变化影响的脆弱性的认知,科学适应冻土变化诸种影响的前提和基础. 基于科学性与实际相结合的原则、全面性与主导性原则、可操作性原则,以暴露度、敏感性与适应能力为标准,遴选构建了我国冻土脆弱性评价指标体系. 借助RS与GIS技术平台,使用空间主成分方法,构建了冻土脆弱性指数模型,在区域尺度上综合评价了冻土的脆弱性. 依据自然分类法,将冻土脆弱性分为潜在脆弱、轻度脆弱、中度脆弱、强度脆弱与极强度脆弱5级. 结果表明:总体上我国冻土以中度脆弱为主,但青藏高原多年冻土对气候变化尤为脆弱;冻土脆弱性具有显著的地域分布特点,青藏高原、西部高山、东北多年冻土区脆弱性相对较高,季节冻土区相对较低. 与季节冻土相比,多年冻土对气候变化更脆弱. 在当前升温幅度条件下,冻土脆弱程度主要取决于冻土的地形暴露与冻土对气候变化的适应能力.
暴雪是冬季雪灾发生的主因,气候变化导致极端天气气候事件频繁发生,准确预报暴雪天气过程对防灾减灾起着重要作用. 以内蒙古锡林郭勒盟地区2012年11月3-5日出现的一次暴雪天气过程为例,对2012年锡林郭勒盟地区冬季出现的暴雪天气过程进行了诊断分析. 结果表明:暴雪天气过程的主要环流背景条件是乌拉尔山长脊和西伯利亚冷涡,而高空蒙古低槽、低空切变线和地面河套气旋是这次暴雪的触发机制. 此次暴雪天气属于强冷空气类蒙古低槽(涡)型,发生在高湿区和水汽通量辐合区内,地面气旋和华北脊对暴雪的产生和落区起到决定性作用. 暴雪天气从降雪前期到结束,整层湿层较深厚,低空急流的建立为暴雪提供了很好的不稳定能量和水汽辐合条件,锡林郭勒盟地区有高空辐散低空辐合强烈的上升运动,为此次暴雪提供了非常有利的动力条件. 乌拉尔山高压脊东移,使强冷空气沿脊前西北气流南下,地面气旋不断发展,而南方暖湿气流强盛,迫使气旋东移;华北脊的阻挡作用使得气旋缓慢移动,影响系统滞留于锡林郭勒盟地区,产生长时间的降雪天气.
利用1961-2011年我国东北地区(包括黑龙江、吉林、辽宁、内蒙古东部)的冬季降水资料,分析了东北地区冬季降水量的时空分布和冬季降水日数的时空分布,对比分析了东亚冬季风对我国东北地区冬季降水的影响. 结果表明:东北地区冬季降水量和降水日数分布有明显的区域差异,以内蒙古东南部、辽宁西北部、吉林西部、黑龙江西南部为低值中心,外围辽宁东部,吉林南部,黑龙江东部、中北部、北部,内蒙古东北部等地区为高值区;冬季降水量年际变化呈增加的线性趋势,1980年代中期以后冬季降水量的高值和低值都有明显的增大;年降雪日数年际变化呈线性增加趋势. 1948-2011年东亚冬季风强度指数的结果表明,东亚冬季风呈明显的线性减弱趋势,弱东亚季风主要集中在20世纪80年代中期以后,除内蒙古东南部等少数区域外,我国东北大部分地区的冬季降水量都和东亚冬季风呈负相关. 对应地,东北地区冬季降水量增大,年际变化的幅度变化增大,降水日数增量较小,这可能与东北地区冬季极端降水天气和干旱天气增加有关. 在东亚范围内,我国东北地区冬季降水多年200 hPa U风增强、500 hPa高压减弱、850 hPa东海南风增强,冬季降水少年则相反.
利用2010年6-7月鄂陵湖野外试验的近地层观测数据,分析了在不同天气条件下黄河源鄂陵湖地区辐射分量、地表能量分量、土壤温度和反照率的变化特征. 结果表明:不同天气条件下,辐射和地表能量各分量日变化差异较大,晴天、阴天和雨天的地表反照率依次递减,平均反照率约为0.21;观测期内,平均辐射贡献从大到小依次为向上长波、向下长波、向下短波、向上短波,日积分值分别为31.4 MJ·m-2、25.6 MJ·m-2、22.4 MJ·m-2、4.2 MJ·m-2,净辐射(12.5 MJ·m-2)占向下短波辐射的55.7%;平均地表能量和土壤温度的变化幅度较晴天小,感热、潜热、0 cm土壤热通量的平均日积分值分别占净辐射的21.2%、43.1%、8.2%;平均土壤温度变化幅度随深度增加逐渐减小,浅层土壤温度峰值较晴天低2 ℃,深层土壤温度相差不大. 云和降水的扰动削弱了向下短波辐射,导致平均感热通量和0 cm土壤热通量的峰值比晴天小,而平均潜热通量的峰值大于晴天. 由于湖泊水体巨大的热容量和水分供应,鄂陵湖地区的气温日较差较小,地表温度变化幅度变小,附近地表温度升高缓慢. 鄂陵湖区的地表能量平衡中,潜热通量占主导,感热和地表土壤热通量次之. 研究结果有助于理解气候变化背景下黄河源区湖泊的能量水分循环过程,为促进该地区光热资源的合理利用和畜牧业的可持续发展提供数据支持.
基于我国河西内陆河流域有关水文、气象台站的观测数据,对1960年代以来河西走廊的石羊河、黑河、疏勒河三大内陆河水系上游山区降水变化特征、趋势及区域时空变化差异进行了分析.结果表明:受全球变暖的影响,石羊河、黑河、疏勒河流域上游的降水量年代际、年际及季节性的变化总体上呈增加的态势,但不同区域降水增幅存在着一定的差异.其中,1960年代,位于祁连山东部的石羊河水系上游山区、中部的黑河水系上游山区及西部的疏勒河水系上游山区普遍少雨;1970年代,石羊河山区降水偏多并持续至今,黑河、疏勒河水系上游山区则降水偏少;1980年代,三大水系上游山区均多雨;1990年代的黑河、疏勒河山区和2000年代的三大水系上游山区均多雨;2010年以来,黑河山区降水偏少,石羊河与疏勒河山区降水均偏多.相对而言,位于祁连山西部山区的疏勒河水系上游年降水量与夏季降水量的增长较为显著.
通过对花海古湖泊沉积剖面8.42~0.405 m沉积物样品的矿物和化学元素测定,分析了沉积物中盐类矿物含量及化学元素K/Na比值的变化情况,结合已有的年代地层结果,重建了花海古湖泊10.47~5.5 cal ka BP湖水盐度变化. 结果表明:花海湖泊全新世湖相沉积阶段中,除个别层位以硫酸盐类矿物沉积为主外,早全新世(10.47~8.87 cal ka BP)和中全新世(8.87~5.5 cal ka BP)均以碳酸盐盐类矿物沉积为主,并且早全新世时期K/Na高于中全新世时期,揭示了早全新世时期湖水盐度高于中全新世时期. 这一结果与该湖泊沉积过程所揭示的湖泊水位变化、粒度等揭示的有效湿度变化具有一致性,表明花海湖泊早、中全新世湖水盐度的高低可以指示其湖泊水位的变化,并间接反映了有效湿度的变化. 结合花海湖泊晚全新世湖泊萎缩、气候干旱的特点,该区域早、中、晚全新世气候干湿变化变化模式可以概况为早全新世降水增强、气候呈现由干向湿的转变,中全新世有效湿度最大,晚全新世气候干旱. 这种全新世气候干湿变化模式有别于西风区,亦与季风区不完全相同,呈现出了一种季风-西风过渡带全新世气候干湿变化的模式.
冻土路基在列车荷载作用下的动力响应是一个复杂的热、力相互作用过程,又是一个急需解决的实际工程难题. 应用冻土物理学、冻土力学、传热学等基本理论建立冻土路基的动力分析模型,以青藏铁路某普通路基典型断面为例,对冻土路基在列车荷载作用下的动力响应进行了数值模拟,并系统的分析了路基内动应力、位移、加速度等动力响应特点. 结果表明:普通路基修筑后,在路基及其下部地基中将会产生大片力学性质不稳定的高温冻土层;在列车荷载作用下,路基内土体产生竖向加速度,随着深度增加,加速度波动范围减小,路基顶面中心点加速度波动范围比路基底面中心点大一个量级. 路基竖向位移由道砟中心向内部呈圆弧状逐渐减小,整个分布关于路基中线对称;在不同季节的路基上施加列车荷载时,路基顶面的动应力差异不大,但路基底面的动应力差异达7.5 kPa. 不同季节的路基内动应力随深度的衰减曲线不同,路基表面以下2 m和大于15 m的深度范围内,差异较小;2~15 m的范围内,差异较大.
寒区高等级公路宽幅路面比普通路面吸热面积更大,增加了保证路基稳定性的难度.在对其进行路基温度场的稳定性分析时,传统的有限元方法都是进行确定性分析,没有考虑到边界条件等因素的随机性、变异性,因此不能得知以上随机因素引起温度场的变幅.采用随机有限元法,由温度场的变分原理,通过摄动法建立随机温度场,从而得到随机温度场的有限元格式,理论公式可广泛适用于其他工程随机温度场问题. 将宽幅路基气温边界条件参数设为随机变量,考虑升温效应,对寒区宽幅路基温度场进行计算,分析了温度场均值和方差的分布规律.结果表明:宽幅路基中部聚热效应明显,路基下部出现厚度不均匀的融化盘,可能造成路基不均匀沉降;边界条件的随机性造成温度场方差分布呈明显的边界效应,即越靠近路基上边界温度场方差越大,在一定深度以下趋于零.此外,不论是路基下出现的融化盘,还是温度场方差分布下边界都将随时间增长而扩大.
冻胀融沉给工程建设及运营带来了极大的危害,是科研人员及工程建设者迫切需要解决的重大问题. 土在冻结及融化过程中会产生水分迁移、冰水共存、固结和冻结缘等现象,这些现象的产生涉及到冻结及融化过程中冰水相变、冰分凝和水分迁移等关键机制的研究. 目前,冰水相变、冰分凝和水分迁移等机制的研究已成为解决冻胀融沉问题的重点及难点. 冻融过程是建立在热力学基础上关于水分场、应力场及温度场的三场耦合过程,其数值模拟正处于由水-热耦合到水-热-力耦合的演化阶段. 而冻结缘参数的测试和确定是理论探索和数值模拟的关键. 近几十年来,随着实验技术的发展,各种先进的探头及仪器设备被开发应用于冻结及融化过程的室内或者场地试验研究,以期揭示其内部的微结构特征及其热力学机理. 因此,系统地总结和分析土在冻结及融化过程中的现象、机理、试验条件以及数值模拟等工作,将对土冻结及融化过程的认识及研究有着至关重要的作用.
热融湖是多年冻土区地下冰融化形成的典型地貌单元,热融湖及其变化对多年冻土热状态、水文过程、生态环境、冻土工程稳定性等有着重要的影响. 热融湖还是重要的温室气体源,与全球气候系统存在着复杂而显著的互馈过程,是气候与环境变化的指示器. 因此,开展热融湖的相关研究是近年来冻土学研究的热点之一. 通过文献综述,从以下方面评述了热融湖研究的现状与进展:1) 热融湖形态特征及其演化过程;2) 热融湖热状况及其热效应研究;3) 热融湖和多年冻土区土壤-植被生态系统的相互作用研究;4) 热融湖对大气中温室气体的贡献. 最后,讨论了该领域目前面临的主要问题,提出了应在热融湖演化的基础理论、动态变化过程的预测、热融湖的冻土水文效应、区域尺度热融湖与冻土、生态、水文和气候耦合过程的综合等方面进一步开展研究,为定量预测和评价冻土区热融湖环境工程效应,应发展不同尺度的计算模型.
综述和评价了含盐冻土物理力学性质研究的文献和进展,包括冻融过程中水盐迁移机理、冻胀机理、盐渍冻土物理力学参数和冻融循环对含盐土力学性质影响等方面的研究,总结归纳了含盐土研究的主要结论和目前存在的问题,在此基础上提出了冻融过程中含盐冻土物理力学性质研究的重点,如水盐迁移、冻胀-盐胀机理和盐渍化冻土结构性等. 鉴于对含盐土研究中所存在的问题,今后应从以下方面着手深入研究:将室外试验纳入到含盐土物理力学性质的研究中,对含盐土研究中试验样品尽量以原状土代替,以野外试验研究补充完善室内试验;应用定量研究含盐土的微观结构和孔隙特征来描述土体的宏观物理力学性质,通过不同试验方法结合寻求更加适合土壤微结构图像处理的新方法;对仪器设备改进,采取合理有效的方法加强盐渍化冻土水盐运移参数试验.
高山寒漠带是我国内陆河山区和我国多数大江、大河源头的主产流区之一. 由于缺乏系统观测数据及相关研究的支撑,当前国内外研究较为匮乏,高山寒漠带水文循环过程机理尚不清楚. 通过在黑河上游葫芦沟流域高山寒漠带试验点布设水文循环观测试验,分析了典型高山寒漠带非冻结期水文特征. 结果表明:高山寒漠试验点观测期(2009年6月7日-9月30日)的降水量为541.4 mm;蒸发皿的蒸发量为256.9 mm,桶式微型蒸渗仪(Micro-Lysimeter)的蒸发量为122.8 mm,平均蒸发量为1.1 mm·d-1. 根据观测,高山寒漠带凝结水量也比较丰富,凝结水虽然没有直接参与高寒山区水文循环的产汇流过程,但它消耗了能量,抵消了部分太阳辐射,间接地参与了产汇流过程. 高山寒漠带小流域在观测期的平均径流深为461.2 mm. 根据降水梯度获取的流域平均降水量为639.1 mm,径流系数为0.72.
冻土水热传输和水热耦合过程是寒区水循环的核心环节和重要组成部分,土壤温度和湿度(含水量)的观测和模拟是冻土水热过程分析的基础. 以中国科学院寒区旱区环境与工程研究所黑河上游生态-水文试验研究站葫芦沟试验小流域为依托,选取季节冻土区的高寒草原、高寒草甸和多年冻土区的沼泽化草甸、高山寒漠等4种典型寒区下垫面,分别布设自动气象站,并调查相关土壤和植被参数,利用SHAW和CoupModel模型对试验点的土壤水热条件进行模拟计算.结果表明:4个试验点多层土壤含水量和地温SHAW模型计算值与实测值对比平均相关系数R2分别为0.65和0.90;CoupModel模型计算值与实测值对比平均R2为0.72和0.93. 总体上,地温的模型估算结果略好于含水量;相对于SHAW模型,CoupModel模型是更适合寒区各种下垫面的一维SVATs模型.
依托中国科学院寒区旱区环境与工程研究所黑河上游生态水文试验研究站葫芦沟试验小流域,选取4种典型寒区下垫面,利用CoupModel模型对试验点的土壤水热传输过程进行模拟计算. 结果显示:冻土对土壤水热传输影响为开始冻结时,冻结作用导致土壤水向上运动,往冻结锋面集结;稳定冻结期,土壤水运动微弱,接近零通量;解冻期,土壤水运动与上下层水势有关. 冻融阶段的土壤水相变会带来热量的急剧变化. 不同下垫面土壤水迁移差异主要体现在冻结过程中土壤水向上运动期间. 沼泽草甸试验点因土壤含水量较大,吸水过程较长且吸水量大于其他3个试验点;高山寒漠试验点因为土壤孔隙较大,成冰作用会使土壤中毛细孔增加,导致冻结过程中出现多次土壤水向上运动状态. 植被覆盖、土壤性质、土壤含水量和冻土类型等是寒区不同下垫面冻土水热传输过程差异的主要原因.
运用连续小波对新疆天山北坡的乌鲁木齐河上游1958-2006年的月均气温(MMT)、月降水量(MP)和月均径流量(MMR)变化进行了多时间尺度特征分析. 结果表明:1960—2005年月均气温、月降水量和月均径流量三者始终存在着12个月左右尺度的主周期,并呈现出全局性特征,信号的强弱依次为MMT、MP 和MMR;同时,MMT存在66个月和96个月的次周期,MP存在6个月、30个月和72个月的次周期,MMR亦存在6个月、24个月、36个月和72个月的次周期. 在此基础上,对其进行交叉小波分析后发现,MMR与MMT、MP的相关程度除了表现为12个月的主周期和6个月的次周期外,MMT对MMR的影响还表现在34个月和72个月的次周期上,而MP对MMR的影响也表现在24个月、36个月和72个月的次周期上. MMT对MMR的影响除了12个月的主周期表现为正相关外,6个月的周期相位亦存在正负交错的现象,说明在该尺度上MMT对MMR的影响既有正面的也有负面的;MMT对MMR的影响在其他次周期上均表现为负相关或近似负相关;而MP对MMR的影响在主次周期上均表现为显著的正相关.
根据水文观测和引水与水电开发资料,分析了大通河流域水能水资源开发利用现状及其对河流水文过程与生态环境的影响.结果表明:由于区域用水和跨流域引水,使大通河中下游河道的水量减少,水环境容量减小,其中,青石嘴、天堂、连城(二)站3-11月平均流量分别减少0.6%~9.6%、0.5%~3.8%、1.7%~52.9%. 自1994年引大入秦工程建成跨流域引水后,连城(二)站年径流量开始减少,1994-2010年平均径流量比1977-1993年减少了5.7%;引大济湟工程建成通水后,加上引大入秦和引硫济金工程,引水总量将达到12.33×108 m3,占大通河多年平均径流量28.16×108 m3的43.8%,对河川径流的影响十分显著. 至2011年,大通河上已建成梯级电站34座,洪水期电站同时泄水会瞬间加大河道流量,枯水期蓄引水又使减水河段水量减少. 梯级水电站群无序蓄放水使洪水过程由天然的平稳状态转变为人工干预的剧烈变化状态,上下游洪峰不对应,对下游地区的防洪安全产生极大威胁. 过度的水能水资源开发,使大通河中下游部分自然河段出现淹没、断流,水生物和两岸的植物萎缩,水环境污染加重,对生态环境产生负面影响. 建议实行流域水资源统一管理,对梯级电站下泄水量统一调度,在减水河段预留必须的生态基流,确保河道内外生态用水;加强河道水位、流量、泥沙、水环境、水生物监测,为流域防汛、水资源管理、生态环境保护等提供决策依据.
在地下水的相关研究中,农药和石油等地下水污染、土地盐碱化、海水入侵等诸多实际问题主要的研究方法都涉及地下水溶质迁移模拟. 相比地下水水流模拟的相对完善,对溶质迁移的模拟比较薄弱且迁移过程本身复杂性较高,目前地下水溶质迁移的研究工作还处在全面发展的阶段. 文中阐述了反映地下水溶质迁移机理和过程的数学模型,综述了溶质迁移模拟在地下水污染物防治、土地盐碱化、海水入侵、石油和放射性废物扩散等问题的诸多应用,归类了目前溶质迁移模拟所使用的对流迁移、对流-弥散模拟等主要数值方法,并对这些方法的优缺点和应用实例做了总结. 最后,分析了目前溶质迁移模拟中存在的不足,展望了未来在参数确定、裂隙介质运移机理和多相介质条件下运移模拟可能取得的突破.
通过对艾比湖地区冻融阶段7个典型样地野外采样和室内分析,研究了冻融作用条件下土壤微生物数量与土壤性质的关系、土壤微生物数量变化特征和土壤微生物群落结构的变化特征. 结果表明:不同冻融阶段,不同种类微生物数量受到不同土壤理化因子的制约. 1月,细菌数量与土壤有机质含量呈显著正相关(P<0.05),真菌数量与土壤含水量和土壤有机质含量呈极显著正相关(P<0.01),与土壤全氮和土壤孔隙度呈显著正相关(P<0.05);3月,只有真菌数量与土壤含水量呈极显著正相关(P<0.01);4月,放线菌数量与土壤有机碳和全氮含量呈显著正相关(P<0.05),然而与土壤pH值呈显著负相关(P<0.05). 总体来讲,冻结期土壤微生物数量较低,冻融后期(4月)达到峰值,其中,7 a 撂荒地的微生物数量最高,3 a撂荒地最低. 在研究区寒冷季节,微生物类群中放线菌占主导地位(81.9%);融化阶段,则是细菌占主要地位(52.1%~53.9%).
塔里木河流域近期综合治理已近尾声,众多山区水库及水电开发建设将大规模展开,开展流域生态调度对巩固综合治理已取得的成效,强化水资源统一管理,构建和谐流域具有重要的现实意义. 基于流域已确定实施的水资源分配方案和近10 a来的生态输水实践,分析了生态调度与水资源合理配置的关系以及流域生态调度关键问题、主要技术路线和基本框架结构,计算了流域生态调度关键控制断面阿拉尔断面生态流量,探索了源流区、干流中上游、干流下游生态调度的目标和措施,提出了源流"集中同步组合"、干流"分段耗水控制"、干流下游"地下水位调控"的生态调度方案,以期为流域水资源统一管理、控制性水利工程运行管理和流域生态环境保护提供参考依据.
根据汇水面积、松散物质储量、沟坡坡度、主沟纵坡降等4项泥石流沟易发性判断特征指标,利用数理统计方法,对甘肃省河西地区20个县、区、市的587条泥石流沟现状进行了分析研究. 结果表明:河西地区泥石流多发育在南北山地的前山走廊地带,泥石流沟分布密度稀疏,属于泥石流稀疏地区. 在泥石流沟易发性主要特征指标方面,研究区汇水面积指标处于偏轻微程度,松散物质储量指标处于中等程度,沟坡坡度指标处于严重程度,主沟纵坡降指标处于中等以下程度. 在泥石流沟易发性评价结果方面区域总体属于泥石流地质灾害低易发-中易发区域. 在全球气候变暖的背景下,研究区内强降水情况发生频率呈现增强趋势,应积极开展极端天气影响下河西地区泥石流发展趋势和干旱、半干旱地区植被特征与泥石流易发性之间的相关关系研究.