[1] Stocker T F, Qin Dahe, Plattner G K, et al. Summary for policymakers[M]//Climate change 2013: the physical scientific basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2013.[2] Wang Qing, Ma Qianqian, Xia Yanlin, et al. Spatial-temporal variations and influential factors of summer precipitation in Shandong regions during last 50 years[J]. Scientia Geographica Sinica, 2014, 34(2): 220-228. [王庆, 马倩倩, 夏艳玲, 等. 最近50年来山东地区夏季降水的时空变化及其影响因素研究[J]. 地理科学, 2014, 34(2): 220-228.][3] Xu Ying, Ding Yihui, Zhao Zongci. Scenario of temperature and precipitation changes in Northwest China due to human activity in the 21st century[J]. Journal of Glaciology and Geocryology, 2003, 25(3): 327-330. [徐影, 丁一汇, 赵宗慈. 人类活动引起的我国西北地区21世纪温度和降水变化情景分析[J]. 冰川冻土, 2003, 25(3): 327-330.][4] Dong Siyan, Gao Xuejie. Long-term climate change: Interpretation of IPCC Fifth Assessment Report[J]. Progressus Inquisitiones de Mutatione Climatis, 2014, 10(1): 56-59. [董思言, 高学杰. 长期气候变化: IPCC第五次评估报告解读[J]. 气候变化研究进展, 2014, 10(1): 56-59.][5] Wang Fang, Ding Yihui. Trend of snow cover fraction in East Asia in 21st century under different scenarios[J]. Plateau Meteorology, 2011, 30(4): 869-877. [汪方, 丁一汇. 不同排放情景下模拟的21世纪东亚积雪面积变化趋势[J]. 高原气象, 2011, 30(4): 869-877.][6] Wang Zhilan, Wang Chenghai. Predicting the snow water equivalent over China in the next 40 years based on climate models from IPCC AR4[J]. Journal of Glaciology and Geocryology, 2012, 34(6): 1273-1283. [王芝兰, 王澄海. IPCC AR4多模式对中国地区未来40 a雪水当量的预估[J]. 冰川冻土, 2012, 34(6): 1273-1283.][7] Zhu Xian, Dong Wenjie. Evaluation and projection of Northern Hemisphere March-April snow cover area simulated by CMIP5 coupled climate models[J]. Progressus Inquisitiones de Mutatione Climatis, 2013, 9(3): 173-180. [朱献, 董文杰. CMIP5耦合模式对北半球3-4月积雪面积的历史模拟和未来预估[J]. 气候变化研究进展, 2013, 9(3): 173-180.][8] Liu Yuanpu, Li Suosuo, Lü Shihua, et al. An analysis of the changing characteristics of snowfall in the East Asia based on CMIP5[J]. Journal of Glaciology and Geocryology, 2014, 36(6): 1345-1352. [柳媛普, 李锁锁, 吕世华, 等. 基于CMIP5的东亚地区降雪量变化特征分析[J]. 冰川冻土, 2014, 36(6): 1345-1352.][9] Gu Xiaoping, Huang Mei, Ji Jinjun, et al. The influence of climate change on vegetation net primary production in southwestern China during recent 20 years period[J]. Journal of Natural Resources, 2007, 22(2): 251-259. [谷晓平, 黄玫, 季劲钧, 等. 近20年气候变化对西南地区植被净初级生产力的影响[J]. 自然资源学报, 2007, 22(2): 251-259.][10] Field C B, Behrenfeld M J, Randerson J T, et al. Primary production of the biosphere: integrating terrestrial and oceanic components[J]. Science, 1998, 281(5374): 237-240.[11] Leng Shuying, Song Changqing, Lü Kejie, et al. Some important scientific issues in researches on regional environmental changes[J]. Advances in Natural Sciences, 2001, 11(2): 221-224. [冷疏影, 宋长青, 吕克解, 等. 区域环境变化研究的重要科学问题[J]. 自然科学进展, 2001, 11(2): 221-224.][12] Xiong Yi, Li Qingkui. Soils of China[M]. Beijing: Science Press, 1987. [熊毅, 李庆逵. 中国土壤[M]. 北京: 科学出版社, 1987.][13] Parmesan C, Yohe G. A global coherent fingerprint of climate change impact across natural system[J]. Nature, 2003, 421(6918): 37-42.[14] Zhou Caiping, Ouyang Hua, Wang Qinxue, et al. Estimation of net primary production in Tibetan Plateau[J]. Acta Geographica Sinica, 2004, 59(1): 74-79. [周才平, 欧阳华, 王勤学, 等. 青藏高原主要生态系统净初级生产力的估算[J]. 地理学报, 2004, 59(1): 74-79.][15] Knapp A K, Smith M D. Variation among biomes in temporal dynamics of aboveground primary production[J]. Science, 2001, 291: 481-484.[16] Field C B, Randerson J T, Malmstr m C M. Global net primary production: combining ecology and remote sensing[J]. Remote Sensing of Environment, 1995, 51: 74-88.[17] Rui Sun, Zhu Qijiang. Estimation of net primary productivity in China using remote sensing data[J]. Journal of Geographical Sciences, 2001, 11: 14-23.[18] Lieth H. Modeling the primary productivity of the world[M]//Primary productivity of the biosphere. New York: Springer, 1975: 237-263.[19] Cui Linli, Shi Jun, Tang Ping, et al. Seasonal change of terrestrial net primary productivity in China[J]. Progress in Geography, 2005, 24(3): 8-17. [崔林丽, 史军, 唐娉, 等. 中国陆地净初级生产力的季节变化研究[J]. 地理科学进展, 2005, 24(3): 8-17.][20] Zhang Jie, Pan Xiaoling, Gao Zhiqiang, et al. Satellite estimates and change detection of net primary production of oasis-desert based on ecosystem process with remotely sensed forcing in arid western China[J]. Acta Geographica Sinica, 2006, 61(1): 15-25. [张杰, 潘晓玲, 高志强, 等. 干旱生态系统净初级生产力估算及变化探测[J]. 地理学报, 2006, 61(1): 15-25.][21] Jiang Qun'ou, Deng Xiangzheng, Zhan Jinyan, et al. Impact of cultivated land conversion on the vegetation carbon storage in the Huang-Huai-Hai Plain[J]. Geographical Research, 2008, 27(4): 839-846. [姜群鸥, 邓祥征, 战金艳, 等. 黄淮海平原耕地转移对植被碳储量的影响[J]. 地理研究, 2008, 27(4): 839-846.][22] Jiao Caixia, Zheng Guanghui, Sun Dongmin. Spatial-temporal change of the terrestrial net primary production (NPP) in Shaanxi Province[J]. Journal of Anhui Agriculture Science, 2008, 36(22): 9684-9685. [焦彩霞, 郑光辉, 孙东敏. 陕西省植被净第一性生产力时空变化研究[J]. 安徽农业科学, 2008, 36(22): 9684-9685.][23] Yang Yamei, Hu Lei, Wu Wei, et al. Seasonal change of terrestrial net primary production in Guizhou[J]. Journal of Southwest University (Natural Science Edition), 2008, 30(9): 123-128. [杨亚梅, 胡蕾, 武伟, 等. 贵州省陆地净初级生产力的季节变化研究[J]. 西南大学学报(自然科学版), 2008, 30(9): 123-128.][24] Parton W J, Scrulock J M O, Ojima D S, et al. Observations and modeling of biomass and soil organic matter dynamic for the grassland biome worldwide[J]. Global Biogeochemical Cycles, 1993, 7(4): 785-809.[25] McGuide A D, Melillo J M, Kicklinghter D W, et al. Equilibrium responses of soil carbon to climate change empirical and process-based estimates[J]. Journal of Biogeography, 1995, 22(4/5): 785-796.[26] Sitch S, Huntingford C, Gedney N, et al. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs)[J]. Global Change Biology, 2008, 14: 2015-2039.[27] Ahlström A, Schurgers G, Arneth A, et al. Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections[J]. Environmental Research Letters, 2012, 7(4). doi:10.1029/2006JD007721.[28] Running S, Baldocchi D, Turne D, et al. A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data[J]. Remote Sensing of Environment, 1999, 70: 108-127.[29] Dan Li, Ji Jinjun, He Yong. Use of ISLSCP II data to intercompare and validate the terrestrial net primary production in a land surface model coupled to a general circulation model[J]. Journal of Geophysical Research, 2007, 112(D2). doi:10.1029/2006JD007721.[30] Wang Chenghai, Wu Yongping, Cui Yang. Evaluating the progress of the CMIP and its application prospect in China[J]. Advances of Earth Science, 2009, 24(5): 461-468. [王澄海, 吴永萍, 崔洋. CMIP研究计划的进展及其在中国地区的检验和应用前景[J]. 地球科学进展, 2009, 24(5): 461-468.][31] Xu Ying, Xu Chonghai. Preliminary assessment of simulations of climate changes over China by CMIP5 multi-models[J]. Atmospheric and Oceanic Science Letters, 2012, 5(6): 489-494.[32] Xu Chonghai, Xu Ying. The projection of temperature and precipitation over China under RCP scenarios using a CMIP5 multi-model ensemble[J]. Atmospheric and Oceanic Science Letters, 2012, 5(6): 527-533.[33] Hua Wenjian, Chen Haishan. Response of land surface processes to global warming and its possible mechanism based on CMIP3 multi-model ensemble[J]. Chinese Journal of Atmospheric Science, 2011, 35(1): 121-133. [华文剑, 陈海山. 陆面过程对全球变暖的响应及其可能机制: 基于CMIP3的多模式集合分析[J]. 大气科学, 2011, 35(1): 121-133.][34] Benestad R E. Climate change scenarios for northern Europe from multi-model IPCC AR4 climate simulations[J]. Geophysical Research Letter, 2005, 32(17). doi:10.1029/2005GL023401.[35] Xu Ying, Gao Xuejie, Giorgi F. Upgrades to the reliability ensemble averaging method for producing probabilistic climate-change projections[J]. Climate Research, 2010, 41(1): 61-81.[36] Giorgi F, Mearns L O. Calculation of average, uncertainty range and reliability of regional climate changes from AOGCM simulations via the 'Reliability Ensemble Averaging (REA)’ method[J]. Journal of Climate, 2002, 15(10): 1141-1158.[37] Giorgi F, Mearns L O. Probability of regional climate change based on the reliability ensemble averaging (REA) method[J]. Geophysical Research Letters, 2003, 30(12). doi:10.1029/2003GL017130.[38] Li Suosuo, Lü Shihua, Zhang Yongjun, et al. The change of global terrestrial ecosystem net primary production (NPP) and its response to climate change in CMIP5[J]. Theoretical and Applied Climatology, 2014. doi:10.1007/s00704-014-1242-8.[39] Slater A G, Lawrence D M. Diagnosing present and future permafrost from climate models[J]. Journal of Climate, 2013, 26(15): 5608-5623.[40] Jorgenson M T, Racine C H, Walters J C, et al. Permafrost degradation and ecological changes associated with a warming climate in central Alaska[J]. Climatic Change, 2001, 48(4): 551-579.[41] Wang Chenghai, Jin Shuanglong, Shi Hongxia. Area change of frozen ground in China in the next 50 years[J]. Journal of Glaciology and Geocryology, 2014, 36(1): 1-8. [王澄海, 靳双龙, 施红霞. 未来50年中国地区冻土面积分布变化[J]. 冰川冻土, 2014, 36(1): 1-8.][42] Sun Zhizhong, Wu Guilong, Yun Hanbo, et al. Permafrost degradation under an embankment of the Qinghai-Tibet Railway in the southern limit of permafrost[J]. Journal of Glaciology and Geocryology, 2014, 36(4): 767-771. [孙志忠, 武贵龙, 贠汉伯, 等. 多年冻土南界附近青藏铁路路基下的冻土退化[J]. 冰川冻土, 2014, 36(4): 767-771.][43] Yin Guo'an, Niu Fujun, Lin Zhanju, et al. The distribution characteristics of permafrost along the Qinghai-Tibet Railway and their response to environment change[J]. Journal of Glaciology and Geocryology, 2014, 36(4): 772-781. [尹国安, 牛富俊, 林战举, 等. 青藏铁路沿线多年冻土分布特征及其对环境变化的响应[J]. 冰川冻土, 2014, 36(4): 772-781.] |