Late Miocene-Pliocene ecological evolution on the northeastern Tibetan Plateau and its possible mechanism
LI Xiaomiao,1,2, WU Zekun1,2, PENG Tingjiang2, MA Zhenhua1,2, FENG Zhantao2, LI Meng2, GUO Benhong2, SONG Chunhui3
1.College of Geography and Tourism,Qufu Normal University,Rizhao 276826,Shandong,China
2.Key Laboratory of Western China’s Environmental Systems,Ministry of Education,College of Earth and Environmental Sciences,Lanzhou University,Lanzhou 730000,China
3.School of Earth Sciences,Lanzhou University,Lanzhou 730000,China
The late Miocene-Pliocene ecological evolution has been a hot topic in discussing the interaction of tectonic, climate and ecological environment. However, whether the C4 plants in middle and low latitudes expanded on a large scale and how the ecology evolved on the time-space dimension are still debated. In this paper, based on the organic carbon isotope, the plant ecotype during the interval of 6.7~3.6 Ma covered on Xiaoshuizi area in the northeastern Tibetan Plateau were reconstructed and combined with the surrounding regions, the ecotype and its evolution were discussed. Our results show that the Xiaoshuizi area is dominated by C3 vegetation during the late Miocene-Pliocene (with an average abundance of 95%), accompanied by a small part of C4 vegetation. In space, the abundance of C4 vegetation in the eastern Liupan mountain is higher than that in the western, and in the north-south direction the C4 plant abundance reached the at about 37°~38° N. In terms of time series, ecological evolution of Xiaoshuizi planation surface is roughly consistent with that of the Chinese Loess Plateau before 4 Ma. It shows during the late Miocene C4 vegetation content is relatively high and C3 vegetation content is low, while C4 vegetation reduced and C3 vegetation increased in early Pliocene. The variations of atmospheric CO2 concentration and regional aridification may be the main influence factor for the vegetation evolution. The tectonic activities in the planation surface area may lead to the differential evolution of C4 vegetation in the Xiaoshuizi area.
Keywords:northeast edge of Qinghai-Tibet Plateau
;
late Miocene-Pliocene
;
organic carbon isotope
;
ecological evolution
LI Xiaomiao, WU Zekun, PENG Tingjiang, MA Zhenhua, FENG Zhantao, LI Meng, GUO Benhong, SONG Chunhui. Late Miocene-Pliocene ecological evolution on the northeastern Tibetan Plateau and its possible mechanism[J]. Journal of Glaciology and Geocryology, 2021, 43(3): 776-785 doi:10.7522/j.issn.1000-0240.2021.0019
Fig.4
Spatial distribution of Late Miocene-Middle Pliocene C4 plants on the northern/northeastern Tibetan Plateau: variation of C4 plant abundance in East and West sides of Liupan Mountain (a), variation of late Miocene C4 plant abundance with latitude (b)
Fig.5
Comparison of C3/C4 vegetation change from 17~3.6 Ma in northeastern Tibetan Plateau and global climate proxy (left), and C4 vegetation in the Loess Plateau during 7~3.6 Ma (right)
Note:(a),(f)Annual mean global sea level temperature and modern temperature difference reconstruction[1];(b)Illite/smectite ratio of the Sea of Japan[52],dust flux of North Pacific[53];(c)Relative strength of Asian summer monsoon[51];(d),(e)C3 and C4 plant relative abundance of Xiaoshuizi and Tianshui Basin[22];(f)Annual mean global sea level temperature and modern temperature difference reconstruction[1];(g),(h)C4 plant relative abundance reconstructed from Lingtai,Xifeng and Baishui profile;(i),(j),(k)Variations of C4,C3 plant abundance and organic carbon isotope;(l)Variations of soil magnetic susceptibility in Xiaoshuizi profile[45];(m)Atmospheric CO2 reconstruction concentration[46-50]
影响C3/C4植物相对丰度变化的潜在因素有温度、CO2浓度以及干湿变化。为了分析研究时段C3/C4植被相对丰度变化与气候的关系,将小水子及黄土高原不同剖面C4植被丰度与磁化率[45]、全球CO2浓度及北半球中纬度海表温度进行综合对比。温度变化参考Herbert等[2]海表温度重建结果,晚中新世-上新世早期北半球中纬度地区温度呈现轻微下降的趋势,研究表明C3植物对于降温的适应能力比C4植物强,因此温度降低至特定阈值时是有可能导致C4植物缩减的。但从细节来看,温度变化与C3/C4植被丰度的变化存在一定的偏差,例如在C4植被显著减少的时期(5~4.3 Ma),温度并未降低,由此可见这一时期研究区生态的异常波动与中低纬度的温度关系不大。从大气CO2浓度来看[图5(m)],晚中新世大气CO2浓度较低,而C4植被对CO2的利用效率比C3植被高,当CO2分压较低时,C4植物在与C3植物的竞争中优势凸显,含量随之增加,部分学者将晚中新世北美地区C4植被的大规模扩张归因于大气CO2浓度降低[11],本文认为晚中新世C4植被丰度最高与当时大气CO2浓度低有密切的关系;进入上新世早中期大气CO2浓度显著增加,不再是C3植被生长的限制因素,C3植被丰度随之增加;4.3~3.6 Ma 阶段大气CO2浓度下降,C3植被丰度再次下降。C3植被与大气CO2浓度准同向的变化关系暗示了大气CO2浓度变化可能是植被演化的重要原因,但是从波动幅度上来看,二者的增减幅度并不完全一致,例如在4.6~4.3 Ma C3植物丰度波动增加的时期大气CO2浓度波幅极小,4 Ma左右C3植被含量增多,CO2浓度略有增加,暗示了其他因素的影响叠加于CO2浓度的影响之上。从干湿变化上来看,晚中新世末期(6.7~5 Ma),夏季风强度减弱[51][图5(c)],小水子持续干旱[45],黄土高原[5]、北半球海洋沉积均记录到大范围的干旱化[52-53][图5(b)]。C4植被相对于C3植被而言,抗旱能力更强,因此在干旱胁迫下,植被整体衰退,但C3植被缩减的幅度更大,故其相对丰度较小,C4植被丰度则显示出相对增加的趋势。Hui等[13]认为晚中新世~7.1 Ma高原东北缘C4植被相对含量的增加与干旱气候条件火灾频发密切关联;上新世早中期,夏季风增强,研究区降水阶段性增强,但湿润期与C3植物丰度增加无严格的对应关系,仅在4.6~4.3 Ma降水达到顶峰的时期[45],C3植被的丰度呈现增加的趋势。由此可见研究区降水对于植被的影响主要体现在极端时期,即气候异常干旱的晚中新世和降水达到峰值的4.6~4.3 Ma阶段。
(3) 小水子地区6.7~3.6 Ma 时段古生态可分为:6.7~5 Ma 阶段C3植被的丰度最低,C4植被的含量最高;5~4.3 Ma 阶段C3植被含量最高,C4植被丰度最低;4.3~3.6 Ma C4植被丰度再次增加但是并未达到晚中新世水平。大气CO2浓度的变化与区域降水共同影响了研究区植被演化。4 Ma左右区域构造活动可能对研究区生态演化产生一定的影响。
High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau
[J]. Earth and Planetary Science Letters, 2007, 258(1/2): 293-306.
Carbon-oxygen isotope records of pedogenic carbonate from the early miocene-pleistocene loess-red clay in the vicinity of the Liupanshan region and its implications for the early origin of C4 plants in the Chinese Loess Plateau
Strengthened East Asian summer monsoons during a period of high-latitude warmth? Isotopic evidence from Mio-Pliocene fossil mammals and soil carbonates from northern China
[J]. Earth and Planetary Science Letters, 2009, 277(3): 443-452.
Late Miocene-Pliocene geomorphological evolution of the Xiaoshuizi peneplain in the Maxian Mountains and its tectonic significance for the northeastern Tibetan Plateau
... Note:(a),(f)Annual mean global sea level temperature and modern temperature difference reconstruction[1];(b)Illite/smectite ratio of the Sea of Japan[52],dust flux of North Pacific[53];(c)Relative strength of Asian summer monsoon[51];(d),(e)C3 and C4 plant relative abundance of Xiaoshuizi and Tianshui Basin[22];(f)Annual mean global sea level temperature and modern temperature difference reconstruction[1];(g),(h)C4 plant relative abundance reconstructed from Lingtai,Xifeng and Baishui profile;(i),(j),(k)Variations of C4,C3 plant abundance and organic carbon isotope;(l)Variations of soil magnetic susceptibility in Xiaoshuizi profile[45];(m)Atmospheric CO2 reconstruction concentration[46-50] ...
... [1];(g),(h)C4 plant relative abundance reconstructed from Lingtai,Xifeng and Baishui profile;(i),(j),(k)Variations of C4,C3 plant abundance and organic carbon isotope;(l)Variations of soil magnetic susceptibility in Xiaoshuizi profile[45];(m)Atmospheric CO2 reconstruction concentration[46-50] ...
Late Miocene global cooling and the rise of modern ecosystems
... 影响C3/C4植物相对丰度变化的潜在因素有温度、CO2浓度以及干湿变化.为了分析研究时段C3/C4植被相对丰度变化与气候的关系,将小水子及黄土高原不同剖面C4植被丰度与磁化率[45]、全球CO2浓度及北半球中纬度海表温度进行综合对比.温度变化参考Herbert等[2]海表温度重建结果,晚中新世-上新世早期北半球中纬度地区温度呈现轻微下降的趋势,研究表明C3植物对于降温的适应能力比C4植物强,因此温度降低至特定阈值时是有可能导致C4植物缩减的.但从细节来看,温度变化与C3/C4植被丰度的变化存在一定的偏差,例如在C4植被显著减少的时期(5~4.3 Ma),温度并未降低,由此可见这一时期研究区生态的异常波动与中低纬度的温度关系不大.从大气CO2浓度来看[图5(m)],晚中新世大气CO2浓度较低,而C4植被对CO2的利用效率比C3植被高,当CO2分压较低时,C4植物在与C3植物的竞争中优势凸显,含量随之增加,部分学者将晚中新世北美地区C4植被的大规模扩张归因于大气CO2浓度降低[11],本文认为晚中新世C4植被丰度最高与当时大气CO2浓度低有密切的关系;进入上新世早中期大气CO2浓度显著增加,不再是C3植被生长的限制因素,C3植被丰度随之增加;4.3~3.6 Ma 阶段大气CO2浓度下降,C3植被丰度再次下降.C3植被与大气CO2浓度准同向的变化关系暗示了大气CO2浓度变化可能是植被演化的重要原因,但是从波动幅度上来看,二者的增减幅度并不完全一致,例如在4.6~4.3 Ma C3植物丰度波动增加的时期大气CO2浓度波幅极小,4 Ma左右C3植被含量增多,CO2浓度略有增加,暗示了其他因素的影响叠加于CO2浓度的影响之上.从干湿变化上来看,晚中新世末期(6.7~5 Ma),夏季风强度减弱[51][图5(c)],小水子持续干旱[45],黄土高原[5]、北半球海洋沉积均记录到大范围的干旱化[52-53][图5(b)].C4植被相对于C3植被而言,抗旱能力更强,因此在干旱胁迫下,植被整体衰退,但C3植被缩减的幅度更大,故其相对丰度较小,C4植被丰度则显示出相对增加的趋势.Hui等[13]认为晚中新世~7.1 Ma高原东北缘C4植被相对含量的增加与干旱气候条件火灾频发密切关联;上新世早中期,夏季风增强,研究区降水阶段性增强,但湿润期与C3植物丰度增加无严格的对应关系,仅在4.6~4.3 Ma降水达到顶峰的时期[45],C3植被的丰度呈现增加的趋势.由此可见研究区降水对于植被的影响主要体现在极端时期,即气候异常干旱的晚中新世和降水达到峰值的4.6~4.3 Ma阶段. ...
High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau
Strengthened East Asian summer monsoons during a period of high-latitude warmth? Isotopic evidence from Mio-Pliocene fossil mammals and soil carbonates from northern China
... Note:(a),(f)Annual mean global sea level temperature and modern temperature difference reconstruction[1];(b)Illite/smectite ratio of the Sea of Japan[52],dust flux of North Pacific[53];(c)Relative strength of Asian summer monsoon[51];(d),(e)C3 and C4 plant relative abundance of Xiaoshuizi and Tianshui Basin[22];(f)Annual mean global sea level temperature and modern temperature difference reconstruction[1];(g),(h)C4 plant relative abundance reconstructed from Lingtai,Xifeng and Baishui profile;(i),(j),(k)Variations of C4,C3 plant abundance and organic carbon isotope;(l)Variations of soil magnetic susceptibility in Xiaoshuizi profile[45];(m)Atmospheric CO2 reconstruction concentration[46-50] ...
A 25 m.y. isotopic record of paleodiet and environmental change from fossil mammals and paleosols from the NE margin of the Tibetan Plateau
Late Miocene-Pliocene geomorphological evolution of the Xiaoshuizi peneplain in the Maxian Mountains and its tectonic significance for the northeastern Tibetan Plateau
... [28]和小水子剖面的TOC和δ13Corg分布δ13Corg value of organic matter and TOC concentration distribution in Xiaoshuizi section and rock samples from potential source regions[28]Fig.23 讨论3.1 晚中新世-上新世早中期小水子及周边区域C3/C4植被丰度重建
... Note:(a),(f)Annual mean global sea level temperature and modern temperature difference reconstruction[1];(b)Illite/smectite ratio of the Sea of Japan[52],dust flux of North Pacific[53];(c)Relative strength of Asian summer monsoon[51];(d),(e)C3 and C4 plant relative abundance of Xiaoshuizi and Tianshui Basin[22];(f)Annual mean global sea level temperature and modern temperature difference reconstruction[1];(g),(h)C4 plant relative abundance reconstructed from Lingtai,Xifeng and Baishui profile;(i),(j),(k)Variations of C4,C3 plant abundance and organic carbon isotope;(l)Variations of soil magnetic susceptibility in Xiaoshuizi profile[45];(m)Atmospheric CO2 reconstruction concentration[46-50] ...
... 影响C3/C4植物相对丰度变化的潜在因素有温度、CO2浓度以及干湿变化.为了分析研究时段C3/C4植被相对丰度变化与气候的关系,将小水子及黄土高原不同剖面C4植被丰度与磁化率[45]、全球CO2浓度及北半球中纬度海表温度进行综合对比.温度变化参考Herbert等[2]海表温度重建结果,晚中新世-上新世早期北半球中纬度地区温度呈现轻微下降的趋势,研究表明C3植物对于降温的适应能力比C4植物强,因此温度降低至特定阈值时是有可能导致C4植物缩减的.但从细节来看,温度变化与C3/C4植被丰度的变化存在一定的偏差,例如在C4植被显著减少的时期(5~4.3 Ma),温度并未降低,由此可见这一时期研究区生态的异常波动与中低纬度的温度关系不大.从大气CO2浓度来看[图5(m)],晚中新世大气CO2浓度较低,而C4植被对CO2的利用效率比C3植被高,当CO2分压较低时,C4植物在与C3植物的竞争中优势凸显,含量随之增加,部分学者将晚中新世北美地区C4植被的大规模扩张归因于大气CO2浓度降低[11],本文认为晚中新世C4植被丰度最高与当时大气CO2浓度低有密切的关系;进入上新世早中期大气CO2浓度显著增加,不再是C3植被生长的限制因素,C3植被丰度随之增加;4.3~3.6 Ma 阶段大气CO2浓度下降,C3植被丰度再次下降.C3植被与大气CO2浓度准同向的变化关系暗示了大气CO2浓度变化可能是植被演化的重要原因,但是从波动幅度上来看,二者的增减幅度并不完全一致,例如在4.6~4.3 Ma C3植物丰度波动增加的时期大气CO2浓度波幅极小,4 Ma左右C3植被含量增多,CO2浓度略有增加,暗示了其他因素的影响叠加于CO2浓度的影响之上.从干湿变化上来看,晚中新世末期(6.7~5 Ma),夏季风强度减弱[51][图5(c)],小水子持续干旱[45],黄土高原[5]、北半球海洋沉积均记录到大范围的干旱化[52-53][图5(b)].C4植被相对于C3植被而言,抗旱能力更强,因此在干旱胁迫下,植被整体衰退,但C3植被缩减的幅度更大,故其相对丰度较小,C4植被丰度则显示出相对增加的趋势.Hui等[13]认为晚中新世~7.1 Ma高原东北缘C4植被相对含量的增加与干旱气候条件火灾频发密切关联;上新世早中期,夏季风增强,研究区降水阶段性增强,但湿润期与C3植物丰度增加无严格的对应关系,仅在4.6~4.3 Ma降水达到顶峰的时期[45],C3植被的丰度呈现增加的趋势.由此可见研究区降水对于植被的影响主要体现在极端时期,即气候异常干旱的晚中新世和降水达到峰值的4.6~4.3 Ma阶段. ...
... Note:(a),(f)Annual mean global sea level temperature and modern temperature difference reconstruction[1];(b)Illite/smectite ratio of the Sea of Japan[52],dust flux of North Pacific[53];(c)Relative strength of Asian summer monsoon[51];(d),(e)C3 and C4 plant relative abundance of Xiaoshuizi and Tianshui Basin[22];(f)Annual mean global sea level temperature and modern temperature difference reconstruction[1];(g),(h)C4 plant relative abundance reconstructed from Lingtai,Xifeng and Baishui profile;(i),(j),(k)Variations of C4,C3 plant abundance and organic carbon isotope;(l)Variations of soil magnetic susceptibility in Xiaoshuizi profile[45];(m)Atmospheric CO2 reconstruction concentration[46-50] ...
High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations
0
2010
Atmospheric carbon dioxide concentration across the mid-Pleistocene transition
0
2009
Alkenone and boron-based Pliocene pCO2 records
0
2010
Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations
... Note:(a),(f)Annual mean global sea level temperature and modern temperature difference reconstruction[1];(b)Illite/smectite ratio of the Sea of Japan[52],dust flux of North Pacific[53];(c)Relative strength of Asian summer monsoon[51];(d),(e)C3 and C4 plant relative abundance of Xiaoshuizi and Tianshui Basin[22];(f)Annual mean global sea level temperature and modern temperature difference reconstruction[1];(g),(h)C4 plant relative abundance reconstructed from Lingtai,Xifeng and Baishui profile;(i),(j),(k)Variations of C4,C3 plant abundance and organic carbon isotope;(l)Variations of soil magnetic susceptibility in Xiaoshuizi profile[45];(m)Atmospheric CO2 reconstruction concentration[46-50] ...
Evolution of the monsoon and dry climate in East Asia during late Cenozoic: a review
... Note:(a),(f)Annual mean global sea level temperature and modern temperature difference reconstruction[1];(b)Illite/smectite ratio of the Sea of Japan[52],dust flux of North Pacific[53];(c)Relative strength of Asian summer monsoon[51];(d),(e)C3 and C4 plant relative abundance of Xiaoshuizi and Tianshui Basin[22];(f)Annual mean global sea level temperature and modern temperature difference reconstruction[1];(g),(h)C4 plant relative abundance reconstructed from Lingtai,Xifeng and Baishui profile;(i),(j),(k)Variations of C4,C3 plant abundance and organic carbon isotope;(l)Variations of soil magnetic susceptibility in Xiaoshuizi profile[45];(m)Atmospheric CO2 reconstruction concentration[46-50] ...
... 影响C3/C4植物相对丰度变化的潜在因素有温度、CO2浓度以及干湿变化.为了分析研究时段C3/C4植被相对丰度变化与气候的关系,将小水子及黄土高原不同剖面C4植被丰度与磁化率[45]、全球CO2浓度及北半球中纬度海表温度进行综合对比.温度变化参考Herbert等[2]海表温度重建结果,晚中新世-上新世早期北半球中纬度地区温度呈现轻微下降的趋势,研究表明C3植物对于降温的适应能力比C4植物强,因此温度降低至特定阈值时是有可能导致C4植物缩减的.但从细节来看,温度变化与C3/C4植被丰度的变化存在一定的偏差,例如在C4植被显著减少的时期(5~4.3 Ma),温度并未降低,由此可见这一时期研究区生态的异常波动与中低纬度的温度关系不大.从大气CO2浓度来看[图5(m)],晚中新世大气CO2浓度较低,而C4植被对CO2的利用效率比C3植被高,当CO2分压较低时,C4植物在与C3植物的竞争中优势凸显,含量随之增加,部分学者将晚中新世北美地区C4植被的大规模扩张归因于大气CO2浓度降低[11],本文认为晚中新世C4植被丰度最高与当时大气CO2浓度低有密切的关系;进入上新世早中期大气CO2浓度显著增加,不再是C3植被生长的限制因素,C3植被丰度随之增加;4.3~3.6 Ma 阶段大气CO2浓度下降,C3植被丰度再次下降.C3植被与大气CO2浓度准同向的变化关系暗示了大气CO2浓度变化可能是植被演化的重要原因,但是从波动幅度上来看,二者的增减幅度并不完全一致,例如在4.6~4.3 Ma C3植物丰度波动增加的时期大气CO2浓度波幅极小,4 Ma左右C3植被含量增多,CO2浓度略有增加,暗示了其他因素的影响叠加于CO2浓度的影响之上.从干湿变化上来看,晚中新世末期(6.7~5 Ma),夏季风强度减弱[51][图5(c)],小水子持续干旱[45],黄土高原[5]、北半球海洋沉积均记录到大范围的干旱化[52-53][图5(b)].C4植被相对于C3植被而言,抗旱能力更强,因此在干旱胁迫下,植被整体衰退,但C3植被缩减的幅度更大,故其相对丰度较小,C4植被丰度则显示出相对增加的趋势.Hui等[13]认为晚中新世~7.1 Ma高原东北缘C4植被相对含量的增加与干旱气候条件火灾频发密切关联;上新世早中期,夏季风增强,研究区降水阶段性增强,但湿润期与C3植物丰度增加无严格的对应关系,仅在4.6~4.3 Ma降水达到顶峰的时期[45],C3植被的丰度呈现增加的趋势.由此可见研究区降水对于植被的影响主要体现在极端时期,即气候异常干旱的晚中新世和降水达到峰值的4.6~4.3 Ma阶段. ...
History of Asian eolian input to the Sea of Japan since 15 Ma: Links to Tibetan uplift or global cooling?
... Note:(a),(f)Annual mean global sea level temperature and modern temperature difference reconstruction[1];(b)Illite/smectite ratio of the Sea of Japan[52],dust flux of North Pacific[53];(c)Relative strength of Asian summer monsoon[51];(d),(e)C3 and C4 plant relative abundance of Xiaoshuizi and Tianshui Basin[22];(f)Annual mean global sea level temperature and modern temperature difference reconstruction[1];(g),(h)C4 plant relative abundance reconstructed from Lingtai,Xifeng and Baishui profile;(i),(j),(k)Variations of C4,C3 plant abundance and organic carbon isotope;(l)Variations of soil magnetic susceptibility in Xiaoshuizi profile[45];(m)Atmospheric CO2 reconstruction concentration[46-50] ...
... 影响C3/C4植物相对丰度变化的潜在因素有温度、CO2浓度以及干湿变化.为了分析研究时段C3/C4植被相对丰度变化与气候的关系,将小水子及黄土高原不同剖面C4植被丰度与磁化率[45]、全球CO2浓度及北半球中纬度海表温度进行综合对比.温度变化参考Herbert等[2]海表温度重建结果,晚中新世-上新世早期北半球中纬度地区温度呈现轻微下降的趋势,研究表明C3植物对于降温的适应能力比C4植物强,因此温度降低至特定阈值时是有可能导致C4植物缩减的.但从细节来看,温度变化与C3/C4植被丰度的变化存在一定的偏差,例如在C4植被显著减少的时期(5~4.3 Ma),温度并未降低,由此可见这一时期研究区生态的异常波动与中低纬度的温度关系不大.从大气CO2浓度来看[图5(m)],晚中新世大气CO2浓度较低,而C4植被对CO2的利用效率比C3植被高,当CO2分压较低时,C4植物在与C3植物的竞争中优势凸显,含量随之增加,部分学者将晚中新世北美地区C4植被的大规模扩张归因于大气CO2浓度降低[11],本文认为晚中新世C4植被丰度最高与当时大气CO2浓度低有密切的关系;进入上新世早中期大气CO2浓度显著增加,不再是C3植被生长的限制因素,C3植被丰度随之增加;4.3~3.6 Ma 阶段大气CO2浓度下降,C3植被丰度再次下降.C3植被与大气CO2浓度准同向的变化关系暗示了大气CO2浓度变化可能是植被演化的重要原因,但是从波动幅度上来看,二者的增减幅度并不完全一致,例如在4.6~4.3 Ma C3植物丰度波动增加的时期大气CO2浓度波幅极小,4 Ma左右C3植被含量增多,CO2浓度略有增加,暗示了其他因素的影响叠加于CO2浓度的影响之上.从干湿变化上来看,晚中新世末期(6.7~5 Ma),夏季风强度减弱[51][图5(c)],小水子持续干旱[45],黄土高原[5]、北半球海洋沉积均记录到大范围的干旱化[52-53][图5(b)].C4植被相对于C3植被而言,抗旱能力更强,因此在干旱胁迫下,植被整体衰退,但C3植被缩减的幅度更大,故其相对丰度较小,C4植被丰度则显示出相对增加的趋势.Hui等[13]认为晚中新世~7.1 Ma高原东北缘C4植被相对含量的增加与干旱气候条件火灾频发密切关联;上新世早中期,夏季风增强,研究区降水阶段性增强,但湿润期与C3植物丰度增加无严格的对应关系,仅在4.6~4.3 Ma降水达到顶峰的时期[45],C3植被的丰度呈现增加的趋势.由此可见研究区降水对于植被的影响主要体现在极端时期,即气候异常干旱的晚中新世和降水达到峰值的4.6~4.3 Ma阶段. ...
Late Cenozoic eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere
... Note:(a),(f)Annual mean global sea level temperature and modern temperature difference reconstruction[1];(b)Illite/smectite ratio of the Sea of Japan[52],dust flux of North Pacific[53];(c)Relative strength of Asian summer monsoon[51];(d),(e)C3 and C4 plant relative abundance of Xiaoshuizi and Tianshui Basin[22];(f)Annual mean global sea level temperature and modern temperature difference reconstruction[1];(g),(h)C4 plant relative abundance reconstructed from Lingtai,Xifeng and Baishui profile;(i),(j),(k)Variations of C4,C3 plant abundance and organic carbon isotope;(l)Variations of soil magnetic susceptibility in Xiaoshuizi profile[45];(m)Atmospheric CO2 reconstruction concentration[46-50] ...
... 影响C3/C4植物相对丰度变化的潜在因素有温度、CO2浓度以及干湿变化.为了分析研究时段C3/C4植被相对丰度变化与气候的关系,将小水子及黄土高原不同剖面C4植被丰度与磁化率[45]、全球CO2浓度及北半球中纬度海表温度进行综合对比.温度变化参考Herbert等[2]海表温度重建结果,晚中新世-上新世早期北半球中纬度地区温度呈现轻微下降的趋势,研究表明C3植物对于降温的适应能力比C4植物强,因此温度降低至特定阈值时是有可能导致C4植物缩减的.但从细节来看,温度变化与C3/C4植被丰度的变化存在一定的偏差,例如在C4植被显著减少的时期(5~4.3 Ma),温度并未降低,由此可见这一时期研究区生态的异常波动与中低纬度的温度关系不大.从大气CO2浓度来看[图5(m)],晚中新世大气CO2浓度较低,而C4植被对CO2的利用效率比C3植被高,当CO2分压较低时,C4植物在与C3植物的竞争中优势凸显,含量随之增加,部分学者将晚中新世北美地区C4植被的大规模扩张归因于大气CO2浓度降低[11],本文认为晚中新世C4植被丰度最高与当时大气CO2浓度低有密切的关系;进入上新世早中期大气CO2浓度显著增加,不再是C3植被生长的限制因素,C3植被丰度随之增加;4.3~3.6 Ma 阶段大气CO2浓度下降,C3植被丰度再次下降.C3植被与大气CO2浓度准同向的变化关系暗示了大气CO2浓度变化可能是植被演化的重要原因,但是从波动幅度上来看,二者的增减幅度并不完全一致,例如在4.6~4.3 Ma C3植物丰度波动增加的时期大气CO2浓度波幅极小,4 Ma左右C3植被含量增多,CO2浓度略有增加,暗示了其他因素的影响叠加于CO2浓度的影响之上.从干湿变化上来看,晚中新世末期(6.7~5 Ma),夏季风强度减弱[51][图5(c)],小水子持续干旱[45],黄土高原[5]、北半球海洋沉积均记录到大范围的干旱化[52-53][图5(b)].C4植被相对于C3植被而言,抗旱能力更强,因此在干旱胁迫下,植被整体衰退,但C3植被缩减的幅度更大,故其相对丰度较小,C4植被丰度则显示出相对增加的趋势.Hui等[13]认为晚中新世~7.1 Ma高原东北缘C4植被相对含量的增加与干旱气候条件火灾频发密切关联;上新世早中期,夏季风增强,研究区降水阶段性增强,但湿润期与C3植物丰度增加无严格的对应关系,仅在4.6~4.3 Ma降水达到顶峰的时期[45],C3植被的丰度呈现增加的趋势.由此可见研究区降水对于植被的影响主要体现在极端时期,即气候异常干旱的晚中新世和降水达到峰值的4.6~4.3 Ma阶段. ...