X img

官方微信

img

群号:冰川冻土交流群

QQ群:218834310

  • 中国百强报刊
  • 中国精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库源刊
  • CN 62-1072/P 
  • ISSN 1000-0240 
  • 创刊于1979年
  • 主管单位:中国科学院
  • 主办单位:中国科学院寒区旱区
  •                  环境与工程研究所
  •                  中国地理学会
高级检索
作者投稿 专家审稿 编辑办公 编委办公 主编办公

冰川冻土, 2021, 43(3): 798-808 doi: 10.7522/j.issn.1000-0240.2021.0021

皋兰山红黏土-黄土记录的上新世-更新世转型期C3/C4植被演化

李孟,1, 彭廷江,1, 韩冰雁1, 郭本泓1, 李小苗1, 马振华1, 冯展涛1, 宋春晖2

1.兰州大学 资源环境学院 西部环境教育部重点实验室,甘肃 兰州 730000

2.兰州大学 地质科学与矿产资源学院,甘肃 兰州 730000

The C3/C4 vegetation history during the Pliocene-Pleistocene transition: evidence from the Gaolanshan red clay-loess deposition

LI Meng,1, PENG Tingjiang,1, HAN Bingyan1, GUO Benhong1, LI Xiaomiao1, MA Zhenhua1, FENG Zhantao1, SONG Chunhui2

1.Key Laboratory of Western China’s Environmental Systems,Ministry of Education,College of Earth and Environmental Sciences,Lanzhou University,Lanzhou 730000,China

2.School of Earth Science,Lanzhou University,Lanzhou 730000,China

通讯作者: 彭廷江,副教授,主要从事晚新生代环境与地貌演化研究. E-mail: pengtj@lzu.edu.cn

编委: 周成林

收稿日期: 2021-05-10   修回日期: 2021-06-10   网络出版日期: 2021-07-29

基金资助: 国家自然科学基金项目.  41971099.  41330745.  42001074.  41401214

Received: 2021-05-10   Revised: 2021-06-10   Online: 2021-07-29

作者简介 About authors

李孟,博士研究生,主要从事有机地球化学与环境演变研究.E-mail:mli19@lzu.edu.cn , E-mail:mli19@lzu.edu.cn

摘要

上新世-更新世转型是上新世温暖气候向更新世冰期-间冰期旋回过渡的重要时段,与此同时,青藏高原的强烈隆升也深刻改变了高原及周边地区的地貌格局和生态环境面貌。因此,开展青藏高原东北缘地区上新世-更新世转型期的古气候变化研究是理解地球各圈层相互作用的重要切入点。而兰州盆地地处中国三大自然区的衔接位置,对气候变化和构造活动响应较为敏感,是探讨构造-气候-生态相互作用的理想区域。以兰州皋兰山红黏土-黄土岩芯为研究对象,在已有黄土高精度磁性地层年代学基础上,综合开展了有机碳同位素和长链正构烷烃碳同位素分析,重建了西部黄土高原上新世-更新世转型期(3.0~2.2 Ma)的C3/C4植被相对丰度演化历史。结果表明:皋兰山上新世-更新世转型期风成沉积中正构烷烃多以C31为主峰的单峰模式,可能指示了草本植被的主要贡献。而典型黄土层位(L32和L33)的正构烷烃多呈现微生物降解的双鼓包模式,表明饱和烃受外源输入影响。综合对比常规指标、总有机碳和长链正构烷烃碳同位素后认为,皋兰山底部黄土的总有机碳同位素不能直接用于重建区域C3/C4植被演化。长链正构烷烃碳同位素研究表明:在3.0~2.2 Ma时期,皋兰山古生态整体以C3植被为主;C4植被扩张发生在3.0 Ma之前,3.0~2.9 Ma发生C4植被快速减少事件,初步推测这可能与降温有关。

关键词: 兰州皋兰山 ; 上新世-更新世转型 ; 总有机碳同位素 ; 单体碳同位素 ; C3/C4植被演化

Abstract

As the critical stage from the Pliocene to the Quaternary, the Pliocene-Pleistocene transition during the interval of 3.0~2.2 Ma obviously experienced climate change from warm climate to the Pleistocene glacial-interglacial cycles. Meanwhile, the Tibetan Plateau also experienced intensive tectonic uplift, the ecological environment and geomorphologic pattern of the Tibetan Plateau and its surrounding areas have been significantly shaped. So the detailed research on the paleoenvironment evolution during the Pliocene-Pleistocene transition can shed new lights on the coupled relationships among the atmosphere, biosphere and lithosphere. The Lanzhou Basin is the ideal place to discuss the interactions between the tectonic uplift, global cooling and regional ecosystem. Here the Gaolanshan red clay-loess sequence from the Lanzhou Basin were detailed analyzed via the n-alkanes distribution and organic geochemistry (total organic carbon and long-chain n-alkanes carbon isotopes) methods. Particularly, the C3/C4 relative abundance evolution history during the interval of 3.0~2.2 Ma in Lanzhou Basin were reconstructed. In detail, the n-alkanes of Gaolanshan red clay-loess sequence during the interval of 3.0~2.2 Ma mainly be characterized with unimodal pattern and the C31 main peak, which implicates the contribution of grassland vegetation. In addition, the n-alkanes distribution of typical loess L32 and L33 show the existence of double bulge, obviously implicating the microbial activities. After the integration of total organic carbon isotope, long-chain n-alkanes carbon isotope and grain sizes, we proposed that organic carbon isotope could be affected by exogenous input via the mixing n-alkanes by the wind. Therefore, we suggested that the total organic carbon isotopes should not be used to reconstruct the C3/C4 relative abundance during the Pliocene-Pleistocene transition in the Lanzhou Basin. Based on the integrated evidence of classical proxies and leaf wax compound-specific carbon isotope, the Gaolanshan paleoecology during the interval of 3.0~2.2 Ma was dominated by the C3 vegetation except the short C4 expansion before 2.9 Ma. It is obvious that the C4 vegetation sharply decreased near 3.0 Ma, possibly correlated with global cooling.

Keywords: Lanzhou Gaolanshan core ; Pliocene-Pleistocene transition ; organic carbon isotopes ; compound-specific carbon isotopes ; C3/C4 vegetation evolution

PDF (3182KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李孟, 彭廷江, 韩冰雁, 郭本泓, 李小苗, 马振华, 冯展涛, 宋春晖. 皋兰山红黏土-黄土记录的上新世-更新世转型期C3/C4植被演化[J]. 冰川冻土, 2021, 43(3): 798-808 doi:10.7522/j.issn.1000-0240.2021.0021

LI Meng, PENG Tingjiang, HAN Bingyan, GUO Benhong, LI Xiaomiao, MA Zhenhua, FENG Zhantao, SONG Chunhui. The C3/C4 vegetation history during the Pliocene-Pleistocene transition: evidence from the Gaolanshan red clay-loess deposition[J]. Journal of Glaciology and Geocryology, 2021, 43(3): 798-808 doi:10.7522/j.issn.1000-0240.2021.0021

0 引言

新生代以来,全球气候至少经历了始新世-渐新世之交、中中新世和上新世末期的三次台阶式降温1-2。上新世-更新世转型是上新世的温暖气候向更新世冰期-间冰期气候转换的重要时段,同时也是现今地质-地貌格局、气候、生态系统和极地冰盖最终稳定形成的重要演化期13-8。晚上新世末北半球冰盖快速扩张的驱动机制一直是讨论的焦点:有研究认为巴拿马海峡的关闭或晚上新世以来大气CO2浓度减少控制着北极冰盖发育,更有学者提出构造隆升对北极冰盖演化和全球变冷起到驱动作用,指出青藏高原隆升对全球气候变化的重要性38。青藏高原强烈隆升使得高原及周边地区沉积巨厚砾岩8-9,内陆干旱化加剧,在我国黄土高原地区堆积典型的第四纪风成黄土-古土壤序列10-11

目前关于高原隆升过程、地貌演化、季风演化和亚洲内陆干旱化等方面均取得了重要研究成果58,但关于上新世-更新世转型期的C3/C4植被演化历史仍存在不同观点。如来自北太平洋钻孔单体碳同位素证据表明,中国北方C4植被在12 Ma左右已达最高水平,之后持续减少并在上新世-更新世转型期降至较低水平12;这也得到中国南海钻孔正构烷烃δ13C结果支持13。然而,同纬度日本海钻孔黑碳δ13C揭示C4植被在5.3 Ma才开始显著扩张,并在上新世-更新世转型期明显增加14。同样,华北平原G3钻孔有机碳δ13C记录也支持这样的观点:C4植被从4 Ma开始扩张,并在上新世-更新世转型期达到最高水平15。除大尺度空间差异外,黄土高原东西部地区C4植被演化也存在差异。黄土高原中部的闫峪剖面有机碳和碳酸盐同位素结果显示:早更新世时期C4植被仍处于较低水平,直至1.6 Ma和0.43 Ma才逐步扩张16。而西峰剖面有机碳同位素结果则显示,红黏土向黄土沉积转变时δ13C突然偏正,指示了上新世-更新世转型期C4植被扩张17。而青藏高原东北缘临夏盆地哺乳动物牙釉δ13C结果表明:2~3 Ma之前发育纯C3植被,直至上新世-更新世转型期C4植被才开始出现18-19。由此可见,上新世-更新世转型期中国北方C4植被演化仍存较大争议。另外,前述长尺度C3/C4植被演化研究侧重于C4植被扩张历史,分辨率问题使得关键时期的演化细节缺失,需要更多证据来进一步澄清前述科学问题。

青藏高原东北缘作为高原向东北方向生长扩展的前缘部位,晚新生代以来构造活动显著;同时,地理位置独特,对区域气候和环境变化较为敏感。因此,该区是探讨青藏高原隆升过程和相关生态环境变化的理想地区20-21。兰州盆地作为陇中盆地的次级子盆地,沉积序列较为完整,近年来围绕上新统-更新统五泉砾岩和黄土地层学方面开展了大量工作,研究揭示上新世以来兰州地区经历了强烈的构造活动,同时也在皋兰山地区堆积了连续的上新世红黏土-第四纪黄土序列911,为探讨晚上新世-第四纪的构造隆升和古环境演变提供了理想材料。为系统厘清高原东北缘上新世-更新世转型期的古生态演化问题,同时也为弥补西部黄土高原地区上新世-更新世转型期长链正构烷烃碳同位素研究的不足,本文以皋兰山钻孔上新世-更新世转型期的红黏土-黄土岩芯(深度265.7~230.0 m)为研究对象(图1),在已有黄土高精度磁性地层学基础上,详细开展了正构烷烃分布、总有机碳和长链正构烷烃碳同位素的有机地球化学分析,恢复了兰州地区上新世-更新世转型期(3.0~2.2 Ma)的C3/C4植被演化历史,以揭示高原东北缘兰州地区上新世-更新世过渡时期的古生态环境演变规律,进而尝试探讨该区晚上新世-早第四纪生态转型的可能原因。

图1

图1   西部黄土高原皋兰山钻孔位置和季风示意图(改自Guo等23

Fig.1   Location of the Gaolanshan drill core on the Western Chinese Loess Plateau and patterns of associated monsoonal activities (Modified from Guo et al23


1 研究区概况

兰州盆地作为青藏高原东北缘陇中盆地的次级子盆地,同时也位于黄土高原向青藏高原过渡的关键区域,从自然地理角度讲,兰州地处青藏高寒区、西北干旱区和东部季风区的交汇地带,亦是“季风三角”的枢纽部位所在(图1),对环境变化较为敏感,是进行古环境研究的理想区域。兰州现属温带半干旱气候,发育稀疏的灌木和草本植物;年均温10 ℃左右,年均降水约310 mm,主要集中在夏季的6—9月22

晚新生代青藏高原的隆升使兰州盆地新生代红层发生变形,其上覆盖厚度超过百余米的五泉砾岩23;与此同时,在地形较为平坦的台地(皋兰山民族村)开始堆积风成红黏土-黄土序列11。兰州地区临近粉尘源区,且北支西风急流在高原北部绕流产生了兰州小高压24。因此,本区发育较厚的第四纪黄土序列,为区域古环境演化研究提供了高分辨率的理想材料。

2 材料与方法

2.1 皋兰山钻孔简介

皋兰山钻孔(36°01′ N,103°51′ E,海拔2 120 m,图1)位于兰州盆地南缘皋兰山民族村附近,共获取了黄土-红黏土岩芯样品265.7 m(取芯率高于95%),主要为棕黄色粉砂质黄土和褐红色古土壤互层。本文首先依据皋兰山钻孔高精度磁性地层年代选取绝对控制点11,再结合黄土高原黄土-古土壤地层年代框架25,利用线性内差法获得皋兰山钻孔底部的深度-年代模型。为探讨兰州盆地上新世-更新世转型期(3.0~2.2 Ma)C3/C4植被演化历史,本文选取265.7~230.0 m红黏土-黄土岩芯为研究对象,挑取70块原生样品进行生物标志化合物实验(间距0.5 m)。

2.2 类脂物抽提

皋兰山70个岩芯样品的正构烷烃碳同位素实验均在中国地质大学(武汉)生物地质与环境地质国家重点实验室完成。具体实验步骤如下:先称取50~70 g烘干磨好样品,再利用ASE150加速萃取仪(DIONEX公司)进行总有机物提取,萃取液为DCM∶MeOH(9∶1, v·v-1)。之后,将萃取液转移至平底烧瓶,旋蒸至硬币大小后将溶液转移到10 mL玻璃瓶,晾干后利用硅胶柱和正己烷溶剂分离出正构烷烃组分,转移至内插管后定容测试。

2.3 正构烷烃测试分析

将样品溶解在10 μL正己烷中,再加入1 μL胆甾烷内标(浓度为0.10133 μg·μL-1)。正构烷烃测试仪器为带有氢火焰离子检测器(FID)的岛津气相色谱仪(GC 2010)。色谱柱为DB-5气相毛细管柱(30 m×0.25 mm×1.0 μm)。升温程序:首先从70 ℃升温至210 ℃(升温速率10 ℃·min-1),再升至310 ℃(升温速率2 ℃·min-1),恒温6 min,整个测试过程约70 min。进样口温度310 ℃,进样量1 μL。氮气流速为3 mL·min-1。皋兰山70个样品均进行GC测试并定量计算。平均碳链长度(ACL)表示长链正构烷烃的平均链长,数学表达式为ACL27-33=(27×C27+29×C29+31×C31+33×C33)/(C27+C29+C31+C33)。

另外,挑选7个样品进行气相色谱-质谱联用仪(GC-MS)测试以定性识别,气相色谱-质谱联用仪型号为Agilent 7890A/5975C MS。色谱柱为安捷伦DB-5MS石英毛细管柱(60 m×0.25 mm×0.25 μm),升温程序与GC相似。

2.4 单体碳同位素测试

依据皋兰山底部钻孔正构烷烃分布特征和含量(无鼓包且单峰含量大于1 μg),挑选30个样品进行单体碳同位素测试,进样量为1 μL。气相色谱-同位素比值谱仪(GC-IRMS)型号分别为Finnigan Trace GC和Finnigan Delta Plus XP。色谱柱型号为DB-5(60 m×0.25 mm×1 μm)。升温程序:首先从50 ℃升温至210 ℃(升温速率10 ℃·min-1),保持2 min后升温至300 ℃(升温速率4 ℃·min-1),接着以10 ℃·min-1升温至310 ℃,保持25.5 min,进样口温度290 ℃。每个样品重复测试两次,每测两个样品测试一次校准样,校准样为实验室配备的正构烷烃标样。碳同位素结果重现性优于0.5‰,δ13C参照VPDB标准(用‰表示)。

2.5 总有机碳(TOC)和有机碳同位素

称取皋兰山岩芯样品约5 g,加过量盐酸之后再静置24 h,接着放入80 ℃水浴锅中加热,再加入过量盐酸并反应12 h,目的是充分反应,去除所有无机碳。然后将样品用蒸馏水洗至中性,烘干后用锡箔纸包好待测。整个实验测试分析在中国科学院广州地球化学研究所所完成,仪器类型为PYROcube型元素分析仪和Iso Prime 100型同位素质谱仪,测试方法同Xie等26

3 结果

图2所示,皋兰山底部红黏土-黄土样品中检测出碳数范围为C14~C35的系列正构烷烃。绝大多数样品中低碳数C14~C20的含量很低,且无明显奇碳优势;中碳数C21~C26含量较低,有一定奇碳优势;长链正构烷烃C27~C33含量占主导,主峰碳均为C31,可能为草本植被贡献所致。正构烷烃分布模式可分三类:一是以短链C18和长链C31为主的双峰模式;第二类是以长链C31为主的单峰模式;第三类是富含复杂混合物(UCM)的双鼓包模式,表明部分正构烷烃已遭受严重降解,主要集中在黄土L32和L33层位(图2)。

图2

图2   皋兰山钻孔底部代表性层位的正构烷烃分布模式

Fig.2   Distributive patterns of n-alkanes in representative strata at the bottom part of the Gaolanshan drill core


皋兰山钻孔底部正构烷烃ACL27-33变化范围为29.71~30.95(图3),平均值为30.25;2.8 Ma之前,ACL值较低且平稳,2.8 Ma之后波动幅度明显增强,整体呈现出黄土层位ACL较高、红黏土和古土壤层位较低的特征,与沉积相特征较为吻合,表明ACL27-33是重建古气候的良好代用指标。皋兰山钻孔底部红黏土-黄土TOC含量总体较低,在0.04%~0.18%之间波动,平均值为0.07%(图3),低于黄土高原西部全新世沉积物的水平。大多数样品含量在0.07%左右,其中L33和L32黄土层TOC含量较高,最高可达0.17%。有机碳同位素δ13Corg除在L34顶部的-18.48‰外,其余值在-24.07‰~-19.81‰之间波动,平均值为-21.60‰,变化幅度达4.26‰,接近于黄土高原南部宝鸡等剖面末次冰期以来的变化范围。其中,黄土层L33和L32为δ13Corg值最低的两个冰期时段(图3)。

图3

图3   皋兰山钻孔底部3.0~2.2 Ma时段中值粒径 (a)、TOC (b)、δ13Corg (c)、ACL (d)和长链δ13Cn-alkane (e)指标综合对比图

Fig.3   The integrated results of paleoclimate records during 3.0~2.2 Ma. Median diameter (a), TOC (b), δ13Corg (c), ACL(d), and long-chain δ13Cn-alkanes (e). δ13CC27δ13CC29, and δ13CC31 data are outlined by the blue, green, orange plots and line, respectively


此外,皋兰山红黏土-黄土单体碳同位素值随碳链长度增加而偏负(图3),这与和其他地区的研究结果相似27-31。具体而言,δ13CC27数值在 -31.46‰~-27.59‰之间波动(均值为-30.21‰);δ13CC29数值主要在-32.09‰~-27.80‰之间波动(均值为-30.65‰);δ13CC31数值主要在-33.22‰~ -29.05‰之间波动(均值为-31.43‰)。如图4所示,δ13CC29δ13CC27δ13CC31均呈现明显的正相关关系,而δ13CC27δ13CC31线性关系较差,主要由于L33、S33和L34层位样品(图中左上部分)结果较为离散所致。

图4

图4   皋兰山钻孔底部红黏土-黄土TOC与δ13Corg散点图(a),以及长链δ13CC27δ13CC29δ13CC31三者关系图(b, c, d)

Fig.4   Scatter plots showing the relationship between TOC and δ13Corg (a), and correlations among the δ13CC27δ13CC29 and δ13CC31 (b, c and d)


4 讨论

4.1 皋兰山有机碳同位素的指示意义探讨

一般认为,土壤有机质碳同位素的信号主要受控于原生植被的影响32,指示了C3/C4植被演化过程。但与此同时,研究也发现微生物活动和外源输入等因素均会干扰碳同位素信号33-35。因此,有机质的来源分析是进行古环境重建的基础和前提。风成黄土沉积的有机质可能来自当时的植被、成岩降解作用和外源输入。研究发现,我国西北地区表土的总有机碳同位素较上覆植被正偏约2.2‰,而外源输入带来的误差则更小,因此土壤有机碳同位素仍能较好指示C3/C4植被变化3436。然而,在黄土高原东部,有机碳同位素和总有机质含量呈正相关;黄土层的δ13Corg偏负,古土壤层的δ13Corg偏正,指示了C3/C4植被相对含量的变化37-38。但黄土高原西北部、新疆伊犁盆地和西欧莱茵河谷的黄土证据则显示:有机碳同位素和总有机碳负相关,黄土层偏正,古土壤层偏负,指示了纯C3植被对气候变化的响应39-41。这可能是因为这些地区不满足C4植被的生长温度或降水阈值42-43。此外,Liu等44通过对西部黄土高原兰州和西宁末次冰期以来黄土有机碳同位素研究后发现,源区输入的外源信号可能掩盖了本地原生植被的信号,继而提出有机碳同位素难以准确反映西部黄土高原的古生态演变历史。

图3所示,皋兰山钻孔底部红黏土-黄土部分δ13Corg呈现出黄土层偏负,古土壤层偏正的变化模式,表面上与黄土高原东部末次冰期以来的模式相同。然而,皋兰山钻孔底部有机碳含量整体很低,仅在红黏土、L33和L32等层位出现高值,与黄土-古土壤反映的冰期/间冰期常规模式不匹配。这可能暗指植被状况不是TOC变化的主控因素。另一方面,皋兰山总有机碳及碳同位素呈现一定负相关关系。若按常规解释,符合纯C3植被响应气候变化的模式。但是,有机碳同位素的两段低值对应于典型黄土层位L32和L33,又与纯C3植被随降水增加而偏负的响应机制相悖。因此,皋兰山有机碳同位素呈现出与黄土高原东、西部已有研究结果不相符的特殊情况。

如前所述,典型黄土层L32和L33的多数样品正构烷烃呈双鼓包分布(图2),表明曾遭受明显的微生物降解45-46。而黄土地层和粒度等证据也表明:L32和L33时期,源区和沉积区气候寒冷干燥,均不利于正构烷烃降解;黄土层粒径整体较粗,显示冬季风较为强盛11。同时,黄土堆积区气候干旱,不利于植被发育。由此推测,降解产物UCM主要为源区母岩输入贡献。事实上,TOC和δ13Corg指标最呈规律性变化的层位正是正构烷烃表现出外源输入特征的L32和L33黄土层(图3)。这直接支持皋兰山底部黄土层有机碳受外源输入影响的看法。此外,该时段磁化率也表现出随粒径变粗而增大趋势47。这一证据亦支持源区磁性矿物输入增多的观点。因此,皋兰山样品的TOC高值和δ13Corg的偏负很可能是外源输入导致的假象。

更重要的是,皋兰山红黏土-黄土总有机碳同位素δ13Corg和长链正构烷烃单体碳同位素δ13Cn-alkane变化不一致(图3)。长链正构烷烃直接来源于高等陆生植被,沉积后性质比较稳定,并且其碳同位素值在风化、生物降解作用下无明显变化48-49。因此,δ13Cn-alkane相较于δ13Corg具有来源明确、性质稳定的优点,被广泛应用于C3/C4植被重建工作50。在红黏土、L34、S33和L33地层转变处,δ13Corg均表现出明显变化;但这些变化却未被δ13Cn-alkane所记录。同时,相较于S32古土壤层中δ13Cn-alkane的正偏,δ13Corg则表现为无趋势的波动。上述矛盾充分说明,δ13Corg受到外源输入因素的影响。

考虑到皋兰山钻孔底部有机质明显受到外源输入影响,其TOC和δ13Corg指标不能作为重建C3/C4植被演化历史的可靠指标。因此,在兰州盆地等沉积速率较快的干旱/半干旱区域,利用δ13Corg指标探讨C3/C4相对丰度时需谨慎。

4.2 兰州地区上新世-更新世转型期C3/C4植被演变

为准确恢复和定量重建皋兰山C3/C4植被演变历史,本文利用端元法首先校正了大气δ13CCO2和CO2浓度变化带来的可能影响。假设植物的碳分馏能力固定不变,大气δ13CCO2的变化会导致植物δ13C的变化。因此,在进行古气候重建工作时应予以校正。本文利用底栖有孔虫建立的δ13CCO2记录51,通过公式(1)进行校正。同时,考虑到C3植被δ13C水平(即C3端元值)亦受大气CO2浓度变化影响,本文利用浮游植物化石重建的大气CO2浓度52对C3植被端元值进行校正。相关计算方法参照Schubert和Jahren53εC3端元和εC4端元初始值引自54。校正后利用公式(2)和公式(3)计算出C4植被所占比例。

εn-alkane=(δ13Cn-alkane-δ13CCO2)/(δ13CCO2+1000)×1000
εn-alkaneC3端元×fC3比例+εC4端元×fC4比例
fC3比例+fC4比例=1

图5为端元法校正之后的结果,据此可将兰州地区皋兰山上新世-更新世转型期(3.0~2.2 Ma) C3/C4植被演化划分为两个阶段:

图5

图5   皋兰山C4植被含量与深海氧同位素(a)、大气δ13CCO2 (b)、pCO2 (c)和中值粒径(d)综合对比图

Fig.5   Comparisons between deep ocean δ18O(a) from Lisieki and Raymo56, atmosphere δ13CCO2 (b) from Tipple et al.51, atmosphere pCO2 (c) from Beerling and Royer52 & Bartoli et al.54, median diameter (d) from Guo et al.11, and C4 content (e). Atmosphere pCO2 based on δ11B, phytoplankton52, and δ11B55 are outlined by the orange, black, and pink plots and line, respectively


第一阶段:3.0~2.9 Ma时段,主体为红黏土沉积,C4植被相对比例最高。上新世大暖期结束时(3.0 Ma),δ13Cn-alkane整体较为偏正[图(3)和(5)],远高于C3植被δ13Cn-alkane分布范围(-39‰~-32‰)。ACL值较低,指示气候整体温暖,但ACL逐渐增大,支持气候逐渐变冷。与此同时,ACL与δ13Cn-alkane呈反相位变化,即气候越冷干,δ13Cn-alkane值逐渐偏负,与黄土高原东部的C4模式一致。据此推断:此时气候条件仍相对温暖湿润,适宜C4植被发育,δ13Cn-alkane由C4植被相对丰度变化主导。定量重建结果表明,此时段C4植被比例最高可达40%(图5)。2.9~2.8 Ma,ACL值逐渐降低,磁化率较之前明显增加47,表明此时降水较之前有所增多,相对充沛。而兰州位于季风影响的边缘区域,雨热同期主要集中在生长季(夏季)。因此,强降水也意味着季节性加强,更适宜C4生长。但此时C4植被仍稳定在低水平,说明降水不是C4植被减少的主要因素。同时,此时段pCO2略微降低5255图5),也更适宜C4发育。排除前述因子后,C4植被生长的限制因素极可能为温度。研究表明,上新世温暖期(3.3~3.0 Ma)结束后,氧同位素揭示的全球冰量显著扩张56,温度进一步下降。这可能逐渐突破了C4植被生长阈值,进而导致兰州皋兰山C4植被快速减少。

第二阶段:2.9~2.2 Ma,C4植被维持在10%左右,再未恢复至之前水平(图5)。进一步分析发现:δ13Cn-alkane与ACL在2.8 Ma之前呈负相关,2.8 Ma之后呈正相关;同时,单体同位素(δ13CC27δ13CC29δ13CC31)在3.0~2.8 Ma和<2.6 Ma两个时段均显著正相关,而2.8~2.6 Ma时段则关系复杂。依据前述特征,本文初步推测早第四纪发生了2次生态转变事件。

2.8 Ma左右,沉积相从红黏土转变为黄土,北半球冰盖开始扩张,ACL和δ13Cn-alkane波动明显,黄土中值粒径增加指示冬季风加强11,气候转冷干。值得注意的是,δ13CC27δ13CC31发生了截然不同的变化(图3)。这是C3模式和C4模式都难以解释的。据此本文认为,可能是因为皋兰山C3植被与C4植被的主峰碳数不同,而较为贫乏的C4植被不足以掩盖C3植被δ13Cn-alkane对气候响应的信号,从而导致了这种分异。δ13CC27δ13CC31反向变化一直持续到2.6 Ma前后,标志着此时段气候较之前更为恶化。与第一阶段类似的是:S33阶段高磁化率47的丰沛降水也未能显著影响C4含量,表明降水量亦不是C4发育的控制因子。因此,此时期C4植被减少的主要因素仍是温度。

2.6 Ma左右经历了全球性的气候转型,皋兰山正式进入第四纪冰期-间冰期旋回。δ13Cn-alkane开始低于C3植被端元值(图5),表明该时期主要发育C3植被。并且δ13Cn-alkane与ACL转变为正相关变化,即ACL指示气候冷干,δ13Cn-alkane值逐渐偏正,与黄土高原西部的C3模式一致。由此可知,此时C4比例进一步减少,其δ13Cn-alkane信号被C3植被覆盖,C3植被对气候的响应主导了δ13Cn-alkane的变化。如S32古土壤阶段,单体同位素值最偏负,几乎为纯C3植被,明显区别于C4植被发育的红黏土时期。

综上所述:上新世-更新世转型期早期(3.0~2.9 Ma),C4植被显著发育,最高可达40%;受温度降低影响,C4植被不断减少,再经历两次气候转型(2.8 Ma和2.6 Ma)之后,C4植被几乎消失殆尽,兰州盆地生态由C3植被主导。需要说明的是,红黏土时期δ13Cn-alkane的波动幅度大于第四纪黄土-古土壤时段,可能表明轨道尺度上C3/C4植被波动幅度较小。

4.3 兰州地区上新世-更新世C3/C4植被演化对区域C4植被扩张的启示

C4植被的出现可以追溯到32~30 Ma,其大幅扩张一般认为发生在晚中新世57。来自巴基斯坦Siwalik沉积有机质和无机碳58、北美哺乳动物牙釉化石59、南美东部钻孔无机碳和动物化石60和东非钻孔中动物化石61等研究结果均支持这一说法:晚中新世7~8 Ma左右全球发生C4植被的显著扩张。因此,C4植被扩张是由大气CO2浓度降低驱动的全球生态事件62。21世纪以来,越来越多的记录表明,全球C4植被扩张的时间和范围并不一致:非洲东北部正构烷烃δ13C表明,C4植被在11 Ma业已达到较高水平50;新疆塔里木盆地钻孔有机碳δ13C显示,C4植被在5.3 Ma显著增加63。这也得到日本海钻孔正构烷烃δ13C和内蒙古哺乳动物牙釉化石δ13C结果的支持1464。近来,Lu等15汇总全球记录后提出,早上新世存在一次全球性C4扩张事件。然而,澳大利亚近海钻孔正构烷烃δ13C表明,C4植被直至3.5 Ma才开始扩张65。同时,太平洋近赤道地区海洋钻孔长链脂肪酸δ13C66和黄土高原西部临夏盆地牙釉δ13C18-19指示,C4植被直至早更新世后才显著增加。此外,黄土高原东部灵台、蓝田剖面无机碳δ13C指示,C4植被经历了2.9~2.7 Ma、1.3~0.9 Ma、0.6 Ma三次反复扩张67。基于全球各地C4植被演化差异,学者们将控制C4植被演化的因素归结于干旱程度146368-69、暖季温度和降水6770-71和野火72-73等区域环境因素。由此可见,关于晚中新世以来C4植被演化的时间和机制等的认识仍未统一。

截止目前,黄土高原西部地区关于C4植被演化的记录较少,以临夏盆地哺乳动物化石δ13C记录为代表的研究,揭示了中新世以来C4植被演化的整体框架18-19。但这一记录分辨率较低,对C4扩张事件的细节不能准确刻画。而皋兰山单体碳同位素刚好弥补此时段的不足。本文结果表明,3.0 Ma之前兰州盆地C4植被占比40%,表明至少3.0 Ma之前发生过C4扩张,但持续多长等问题仍需更多证据验证;3.0~2.9 Ma时期,兰州地区发生了一次快速的C4植被减少事件;之后,整体以C3植被为主。因此,本文研究结果亦不支持早第四纪C4植被扩张的观点。

5 结论

在已有黄土地层学和高精度磁性年代学研究基础上,本文详细开展了兰州皋兰山钻孔红黏土-黄土岩芯的有机碳和长链正构烷烃碳同位素综合分析,据此重建了兰州盆地上新世-更新世转型期(3.0~2.2 Ma)C3/C4植被演化历史。主要结论如下:

(1)上新世-更新世转型期,皋兰山红黏土-黄土沉积的正构烷烃多呈现以C31为主峰的单峰模式,可能指示草本植被为主的生态特征。典型黄土层L32和L33的正构烷烃呈双鼓包分布,表明曾遭受明显的微生物降解,结合有机碳同位素和粒度等推测其受外源输入影响明显。

(2)详细对比皋兰山有机碳同位素和长链正构烷烃碳同位素后发现,皋兰山底部样品的总有机碳同位素很可能受外源输入影响,在重建C3/C4植被变化时需谨慎。

(3)长链正构烷烃碳同位素研究表明:3.0~2.2 Ma时期,皋兰山古生态整体以C3植被为主;C4植被扩张发生在3.0 Ma之前,3.0~2.9 Ma发生C4植被快速减少,推测可能与降温有关。

本文是在李吉均先生指导下完成,谨以此文,纪念恩师李吉均先生在黄土与古气候方面的贡献!

参考文献

Zachos JPagani MSloan Let al.

Trends, rhythms, and aberrations in global climate 65 Ma to present

[J]. Science, 20012925517): 686-693.

[本文引用: 2]

Mudelsee MBickert TLear C Het al.

Cenozoic climate changes: a review based on time series analysis of marine benthic δ18O records

[J]. Reviews of Geophysics, 2014523): 333-374.

[本文引用: 1]

Raymo M E.

The initiation of Northern Hemisphere glaciation

[J]. Annual Review of Earth and Planetary Sciences, 1994221): 353-383.

[本文引用: 2]

Li JijunFang Xiaomin.

Uplift of Tibetan Plateau and its effects on environmental changes

[J]. Chinese Science Bulletin, 19984315): 1569-1574.

李吉均方小敏.

青藏高原隆起与环境变化研究

[J]. 科学通报, 19984315): 1569-1574.

An Z SKutzbach J EPrell W Let al.

Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times

[J]. Nature, 20014116833): 62-66.

[本文引用: 1]

Chang MWang XLiu Het al.

Extraordinarily thick-boned fish linked to the aridification of the Qaidam Basin (northern Tibetan Plateau)

[J]. PNAS, 200810536): 13246-13251.

Deng TWang XFortelius Met al.

Out of Tibet: Pliocene woolly rhino suggests high-plateau origin of ice age megaherbivores

[J]. Science, 20113336047): 1285-1288.

Li J JFang X MSong C Het al.

Late Miocene-Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes

[J]. Quaternary Research, 2014817): 400-423.

[本文引用: 4]

Guo B HLiu S PPeng T Jet al.

Late Pliocene establishment of exorheic drainage in the northeastern Tibetan Plateau as evidenced by the Wuquan Formation in the Lanzhou Basin

[J]. Geomorphology, 2018303271-283.

[本文引用: 2]

Ding Z LDerbyshire EYang S Let al.

Stepwise expansion of desert environment across northern China in the past 3.5 Ma and implications for monsoon evolution

[J]. Earth and Planetary Science Letters, 20052371/2): 45-55.

[本文引用: 1]

Guo B HPeng T JYu Het al.

Magnetostratigraphy and palaeoclimatic significance of the Late Pliocene red clay‐Quaternary loess sequence in the Lanzhou Basin, western Chinese Loess Plateau

[J]. Geophysical Research Letters, 2020473): e2019GL086556.

[本文引用: 7]

Jia GLi ZPeng Pet al.

Aeolian n-alkane isotopic evidence from North Pacific for a Late Miocene decline of C4 plant in the arid Asian interior

[J]. Earth and Planetary Science Letters, 201232132-40.

[本文引用: 1]

Zhou BBird MZheng Het al.

New sedimentary evidence reveals a unique history of C4 biomass in continental East Asia since the early Miocene

[J]. Scientific Reports, 201771): 170.

[本文引用: 1]

Shen XWan SColin Cet al.

Increased seasonality and aridity drove the C4 plant expansion in Central Asia since the Miocene-Pliocene boundary

[J]. Earth and Planetary Science Letters, 201850274-83.

[本文引用: 3]

Lu JAlgeo T JZhuang Get al.

The Early Pliocene global expansion of C4 grasslands: A new organic carbon-isotopic dataset from the north China plain

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020538109454.

[本文引用: 2]

Sun J TZhang Zet al.

Stepwise expansions of C4 biomass and enhanced seasonal precipitation and regional aridity during the Quaternary on the southern Chinese Loess Plateau

[J]. Quaternary Science Reviews, 20123457-65.

[本文引用: 1]

Rao ZhiguoZhang XiaoXue Qianet al.

Primary organic carbon isotopic study result of Xifeng loess/red clay profile

[J]. Quaternary Sciences, 2012324): 825-827.

[本文引用: 1]

饶志国张晓薛骞.

西峰红黏土/黄土剖面有机碳同位素研究的初步结果

[J]. 第四纪研究, 2012324): 825-827.

[本文引用: 1]

Wang YDeng T.

A 25 m.y. isotopic record of paleodiet and environmental change from fossil mammals and paleosols from the NE margin of the Tibetan Plateau

[J]. Earth and Planetary Science Letters, 20052361-2): 322-338.

[本文引用: 3]

Biasatti DWang YDeng T.

Strengthening of the East Asian summer monsoon revealed by a shift in seasonal patterns in diet and climate after 2~3 Ma in northwest China

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 20102971): 12-25.

[本文引用: 3]

Miao YHerrmann MWu Fet al.

What controlled Mid-Late Miocene long-term aridification in Central Asia?Global cooling or Tibetan Plateau uplift: A review

[J]. Earth-Science Reviews, 20121123/4): 155-172.

[本文引用: 1]

Molnar PBoos W RBattisti D S.

Orographic controls on climate and paleoclimate of Asia: Thermal and mechanical roles for the Tibetan Plateau

[J]. Annual Review of Earth and Planetary Sciences. 20103877-102.

[本文引用: 1]

Ye XiyanFeng ZhantaoPeng Tingjianget al.

Preliminary clay minerals on the loess-paleosol sequence in the Xijin core, Lanzhou

[J]. Journal of Lanzhou University: Natural Sciences, 2018541): 75-81.

[本文引用: 1]

叶喜艳冯展涛彭廷江.

兰州西津黄土-古土壤序列中黏土矿物特征

[J]. 兰州大学学报(自然科学版), 2018541): 75-81.

[本文引用: 1]

Guo B HPeng T JFeng Z Tet al.

Pedogenic components of Xijin loess from the western Chinese Loess Plateau with implications for the Quaternary climate change

[J]. Journal of Asian Earth Sciences, 2019170128-137.

[本文引用: 3]

Luo Siwei.

Analysis of shear line formation in eastern Tibetan Plateau of China in winter

[J].Acta Meteorologica Sinica, 1963333): 305-319.

[本文引用: 1]

罗四维.

冬季我国高原东侧切变线形成的分析

[J]. 气象学报, 1963333): 305-319.

[本文引用: 1]

Ding ZDerbyshire EYang Set al.

Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ18O record

[J]. Paleoceanography, 2002173): 1-5.

[本文引用: 1]

Xie LSpiro BWei G.

Purification of BaSO4 precipitate contaminated with organic matter for oxygen isotope measurements (δ18O and Δ17O)

[J]. Rapid Communications in Mass Spectrometry, 20163014): 1727-1733.

[本文引用: 1]

Wang Suping.

Molecular distribution and C-H isotopes of n-alkanes of lacustrine sediments since the last deglaciation in the northeast Tibet Plateau

[D]. LanzhouLanzhou University2011.

[本文引用: 1]

王素萍.

青藏高原东北部湖泊沉积物末次冰消期以来正构烷烃分子分布特征及其碳、氢同位素的古环境意义

[D]. 兰州兰州大学2011.

[本文引用: 1]

Xu Yuanbin.

Compound specific carbon and hydrogen isotopes of long chain n-alkanes extracted from past 15 ka lacustrine sediments of Gonghai Lake, Shanxi Province, and their paleoclimatic significance

[D]. LanzhouLanzhou University2014.

许元斌.

山西公海过去15 ka以来的湖泊沉积物长链正构烷烃单体碳/氢同位素及其古气候意义

[D]. 兰州兰州大学2014.

Rieley GCollier R JJones D Met al.

Sources of sedimentary lipids deduced from stable carbon-isotope analyses of individual compounds

[J]. Nature, 19913526334): 425-427.

Spooner NRieley GCollister JWet al.

Stable carbon isotopic correlation of individual biolipids in aquatic organisms and a lake bottom sediment

[J]. Organic Geochemistry, 1994216): 823-827.

Brincat DYamada KIshiwatari Ret al.

Molecular-isotopic stratigraphy of long-chain n-alkanes in Lake Baikal Holocene and glacial age sediments

[J]. Organic Geochemistry, 2000314): 287-294.

[本文引用: 1]

Cerling T EQuade JBowman J R.

Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan

[J]. Nature, 19893426246): 163-166.

[本文引用: 1]

Xie ShuchengWang ZhiyuanWang Hongmeiet al.

The occurrence of a grassy vegetation over the Chinese Loess Plateau since the last interglacier: the molecular fossil record

[J]. Science in China Series D-Earth Sciences, 2002451): 53-62.

[本文引用: 1]

谢树成王志远王红梅.

末次间冰期以来黄土高原的草原植被景观: 来自分子化石的证据

[J]. 中国科学:D辑 地球科学, 2002451): 28-35.

[本文引用: 1]

Rao ZhiguoGuo WenkangXue Qianet al.

Assessment on primary provenance of organic matter in loess/paleosol sequences in the western Chinese Loess Plateau: Local biomass or bedrocks in dust source regions?

[J]. Quaternary Sciences, 2015354): 819-827.

[本文引用: 1]

饶志国郭文康薛骞.

黄土高原西部地区黄土地层有机质主要来源分析

[J]. 第四纪研究, 2015354): 819-827.

[本文引用: 1]

Melillo J CAber J DLinkins A Eet al.

Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter

[J]. Plant and Soil, 19891152): 189-198.

[本文引用: 1]

Wang Guoan.

Application of stable carbon isotope for paleoenvironmental research

[J]. Quaternary Science, 2003235): 471-484.

[本文引用: 1]

王国安.

稳定碳同位素在第四纪古环境研究中的应用

[J]. 第四纪研究, 2003235): 471-484.

[本文引用: 1]

Zhang ZZhao MLu Het al.

Lower temperature as the main cause of C4 plant declines during the glacial periods on the Chinese Loess Plateau

[J]. Earth and Planetary Science Letters, 20032143/4): 467-481.

[本文引用: 1]

Liu WHuang YAn Zet al.

Summer monsoon intensity controls C4/C3 plant abundance during the last 35 ka in the Chinese Loess Plateau: Carbon isotope evidence from bulk organic matter and individual leaf waxes

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 20052203-4): 243-254.

[本文引用: 1]

Rao ZhiguoChen FahuCao Jieet al.

Variation of soil organic carbon isotope and C3/C4 vegetation type transition in the western Loess Plateau during the Last Glacial and Holocene periods

[J]. Quaternary Science, 2005251): 107-114.

[本文引用: 1]

饶志国陈发虎曹洁.

黄土高原西部地区末次冰期和全新世有机碳同位素变化与C3/C4植被类型转换研究

[J]. 第四纪研究, 2005251): 107-114.

[本文引用: 1]

Zhang Xiao.

Variations and paleoclimatic significance of loess organic carbon isotopes in Longxi Loess Plateau and Xinjiang Ili Basin

[D]. LanzhouLanzhou University2013.

张晓.

陇西黄土高原和新疆伊犁盆地黄土有机碳同位素的变化及其古环境意义

[D]. 兰州兰州大学2013.

Hatté CFontugne MRousseau D Det al.

δ13C variations of loess organic matter as a record of the vegetation response to climatic changes during the Weichselian

[J]. Geology, 1998267): 583-586.

[本文引用: 1]

Sun BLiu WSun Yet al.

The precipitation “threshold value” on C4 /C3 abundance of the Loess Plateau, China

[J]. Science Bulletin, 2015607): 718-725.

[本文引用: 1]

Rao ZXu YXia Det al.

Variation and paleoclimatic significance of organic carbon isotopes of Ili loess in arid Central Asia

[J]. Organic Geochemistry, 20136356-63.

[本文引用: 1]

Liu WYang HNing Yet al.

Contribution of inherent organic carbon to the bulk δ13C signal in loess deposits from the arid western Chinese Loess Plateau

[J]. Organic Geochemistry, 2007389): 1571-1579.

[本文引用: 1]

Gough M A, and Rowland S J.

Characterization of unresolved complex mixtures of hydrocarbons in petroleum

Nature, 19903446267): 648-650.

[本文引用: 1]

Guo PengfeiHe ShengZhu Shukuiet al.

Genesis and composition of ‘baseline hump’ in biodegraded oil samples from Biyang Depression

[J]. Oil & Gas Geology, 2014353): 317-325.

[本文引用: 1]

国朋飞何生朱书奎.

泌阳凹陷生物降解油"基线鼓包"成因及化合物组成

[J]. 石油与天然气地质, 2014353): 317-325.

[本文引用: 1]

Yu Hao.

The strata division of the Gaolanshan loess and its Quaternary climate evolution

[D]. LanzhouLanzhou University2017.

[本文引用: 3]

于昊.

兰州皋兰山黄土地层划分及其记录的气候演变

[D]. 兰州兰州大学2017.

[本文引用: 3]

Mansuy LPhilp R PAllen J.

Source identification of oil spills based on the isotopic composition of individual components in weathered oil samples

[J]. Environmental Science & Technology, 19973112): 3417-3425.

[本文引用: 1]

Mazeas LBudzinski HRaymond N.

Absence of stable carbon isotope fractionation of saturated and polycyclic aromatic hydrocarbons during aerobic bacterial biodegradation

[J]. Organic Geochemistry, 20023311): 1259-1272.

[本文引用: 1]

Feakins S JLevin N ELiddy H Met al.

Northeast African vegetation change over 12 my

[J]. Geology, 2013413): 295-298.

[本文引用: 2]

Tipple B JMeyers S RPagani M.

Carbon isotope ratio of Cenozoic CO2: A comparative evaluation of available geochemical proxies

[J]. Paleoceanography, 201025PA3202.

[本文引用: 2]

Beerling D JRoyer D L.

Convergent Cenozoic CO2 history

[J]. Nature Geoscience, 201147): 418-420.

[本文引用: 4]

Schubert B AJahren A H.

Global increase in plant carbon isotope fractionation following the last glacial maximum caused by increase in atmospheric pCO2

[J]. Geology, 2015435): 435-438.

[本文引用: 1]

Tipple B JPagani M.

A 35 Myr North American leaf-wax compound-specific carbon and hydrogen isotope record: Implications for C4 grasslands and hydrologic cycle dynamics

[J]. Earth and Planetary Science Letters, 20102991/2): 250-262.

[本文引用: 2]

Bartoli GHönisch BZeebe R E.

Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations

[J]. Paleoceanography, 201126PA4213.

[本文引用: 2]

Lisiecki L ERaymo M E.

A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records

[J]. Paleoceanography, 2005201).

[本文引用: 2]

Edwards E JOsborne C PStromberg C A Eet al.

The Origins of C4 grasslands: Integrating evolutionary and ecosystem science

[J]. Science, 20103285978): 587-591.

[本文引用: 1]

Quade JCerling E TBowman R J.

Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in

[J]. Nature, 19893426246): 163-166.

[本文引用: 1]

Macfadden B JCerling T E.

Mammalian herbivore communities, ancient feeding ecology, and carbon isotopes: A 10 million-year sequence from the Neogene of Florida

[J]. Journal of Vertebrate Paleontology, 1996161): 103-115.

[本文引用: 1]

Latorre CQuade JMcIntosh W C.

The expansion of C4 grasses and global change in the late Miocene: stable isotope evidence from the Americas

[J]. Earth and Planetary Science Letters, 19971461/2): 83-96.

[本文引用: 1]

Morgan M EKingston J DMarino B D.

Carbon isotopic evidence for the emergence of C4 plants in the Neogene from Pakistan and Kenya

[J]. Nature, 19943676459): 162-165.

[本文引用: 1]

Cerling T EHarris J MMacfadden B Jet al.

Global vegetation change through the Miocene/Pliocene boundary

[J]. Nature, 19973896647): 153-158.

[本文引用: 1]

Sun J TGong Yet al.

Effect of aridification on carbon isotopic variation and ecologic evolution at 5.3 Ma in the Asian interior

[J]. Earth and Planetary Science Letters, 20133801-11.

[本文引用: 2]

Zhang CWang YDeng Tet al.

C4 expansion in the central Inner Mongolia during the latest Miocene and early Pliocene

[J]. Earth and Planetary Science Letters, 20092873/4): 311-319.

[本文引用: 1]

Andrae J WMcInerney F APolissar P Jet al.

Initial expansion of C4 vegetation in Australia during the Late Pliocene

[J]. Geophysical Research Letters, 20184510): 4831-4840.

[本文引用: 1]

Yamamoto SSawada KNakamura Het al.

Stable carbon isotopic variation of long chain n-alkanoic acids in the equatorial Pacific sediments over the last 40 Ma: Implications for expansion of C4 grassland in South America

[J]. Organic Geochemistry, 20147662-71.

[本文引用: 1]

An ZHuang YLiu Wet al.

Multiple expansions of C4 plant biomass in East Asia since 7 Ma coupled with strengthened monsoon circulation

[J]. Geology, 2005339): 705-708.

[本文引用: 2]

Jiang WPeng SHao Qet al.

Carbon isotopic records in paleosols over the Pliocene in Northern China: implication on vegetation development and Tibetan uplift

[J]. Chinese Science Bulletin, 2002478): 687-690.

[本文引用: 1]

Dupont L MRommerskirchen FMollenhauer Get al.

Miocene to Pliocene changes in South African hydrology and vegetation in relation to the expansion of C4 plants

[J]. Earth and Planetary Science Letters, 2013375408-417.

[本文引用: 1]

Huang Y.

Climate change as the dominant control on glacial-interglacial variations in C3 and C4 plant abundance

[J]. Science, 20012935535): 1647-1651.

[本文引用: 1]

Yang SDing ZWang Xet al.

Negative δ18O–δ13C relationship of pedogenic carbonate from northern China indicates a strong response of C3/C4 biomass to the seasonality of Asian monsoon precipitation

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 201231732-40.

[本文引用: 1]

Pagani MFreeman K HArthur M A.

Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses

[J]. Science, 19992855429): 876-879.

[本文引用: 1]

Hoetzel SDupont LSchefuß Eet al.

The role of fire in Miocene to Pliocene C4 grassland and ecosystem evolution

[J]. Nature Geoscience, 2013612): 1027-1030.

[本文引用: 1]

/