冰川冻土, 2021, 43(3): 818-826 doi: 10.7522/j.issn.1000-0240.2021.0023

黄土记录的中亚干旱区东部全新世气候与环境演化

范义姣,1, 马箫忆1, 刘慧1, 王树源1, 杨军怀1, 陈梓炫1, 高福元2, 贾佳3, 夏敦胜,1

1.兰州大学 资源环境学院 西部环境教育部重点实验室,甘肃 兰州 730000

2.兰州城市学院 地理与环境工程学院,甘肃 兰州 730070

3.浙江师范大学 地理与环境科学学院,浙江 金华 321004

Climatic and environmental evolution during the Holocene in the eastern Arid Central Asia recorded by loess-paleosol sequences

FAN Yijiao,1, MA Xiaoyi1, LIU Hui1, WANG Shuyuan1, YANG Junhuai1, CHEN Zixuan1, GAO Fuyuan2, JIA Jia3, XIA Dunsheng,1

1.Key Laboratory of Western China’s Environmental Systems,Ministry of Education,College of Earth and Environmental Sciences,Lanzhou University,Lanzhou 730000,China

2.College of Geography and Environmental Engineering,Lanzhou City University,Lanzhou 730070,China

3.College of Geography and Environmental Sciences,Zhejiang Normal University,Jinhua 321004,Zhejiang,China

通讯作者: 夏敦胜,教授,主要从事环境磁学、干旱区环境及城市污染研究. E-mail: dsxia@lzu.edu.cn

编委: 武俊杰

收稿日期: 2021-04-21   修回日期: 2021-06-10   网络出版日期: 2021-07-29

基金资助: 国家自然科学基金项目.  41877444

Received: 2021-04-21   Revised: 2021-06-10   Online: 2021-07-29

作者简介 About authors

范义姣,博士研究生,主要从事第四纪黄土与气候变化研究.E-mail:fanyj18@lzu.edu.cn , E-mail:fanyj18@lzu.edu.cn

摘要

选取位于中亚干旱区东部新疆天山地区的两个典型黄土沉积剖面,通过磁学参数(χARM/SIRM)、亮度(L*)、有机碳/氮同位素(δ13Corgδ15N)等记录,对研究区内全新世以来的气候环境进行重建。结果表明:早全新世,χARM/SIRM、L*指示黄土成壤较弱、有机质含量低,δ13Corg记录表明区域降水较少,共同反映该时期地表植被覆盖低、相对干旱的气候环境;中晚全新世,χARM/SIRM、L*δ13Corg记录的湿度逐渐增加,黄土δ15N偏正变化,指示地表生态系统生产力增强、植被覆盖增加,表明该区域气候适宜期发生在中晚全新世。中亚干旱区东部全新世以来的气候环境特征,与北半球高纬度冰盖、太阳辐射强度的变化密切相关。

关键词: 黄土 ; δ13Corg ; δ15N ; 全新世 ; 新疆天山地区 ; 中亚干旱区东部

Abstract

Two typical loess-paleosol sequences (KS16 and LJW10), located in the Tianshan region of Xinjiang in the eastern Arid Central Asia (ACA), were selected to reconstruct the climatic and environmental evolution during the Holocene. The susceptibility parameters (χARM/SIRM), lightness (L*), organic carbon/nitrogen isotope (δ13Corg and δ15N) of the KS16 section (43°25′56″ N, 83°56′35″ E, 1 314 m a.s.l.) in the Ili Basin were analyzed comprehensively. In addition, we combined the δ15N of LJW10 section (43°58′29″ N, 85°20′10″ E, 1 462 m a.s.l.), located in the northern Tianshan Mountains, and the proxies (χARM/SIRM, L*δ13Corgδ15N,) of KS16 section to reconstruct regional climatic and environmental evolution during the Holocene, which is helpful to understanding the synergistic effects of climate change and ecological environment in the eastern Arid Central Asia. The results show that: During the early Holocene, the χARM/SIRM and L* both indicated the pedogenesis was relatively weak and the organic matter content was low in the loess, with positive δ13Corg showed regional precipitation was limited, which reflected the low vegetation coverage and relatively arid climate environment during this period. During the middle and late Holocene, the variations of χARM/SIRM, L* and δ13Corg showed the moisture gradually increased, and the δ15N record presented more positive, which all indicated that the climatic optimum occurred at this period. The climatic and environmental characteristics of the eastern Arid Central Asia during the Holocene are closely related to the variations of the high latitude ice sheet and the intensity of insolation in northern hemisphere.

Keywords: loess ; δ13Corg ; δ15N ; Holocene ; Tianshan region of Xinjiang ; eastern Arid Central Asia

PDF (2378KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

范义姣, 马箫忆, 刘慧, 王树源, 杨军怀, 陈梓炫, 高福元, 贾佳, 夏敦胜. 黄土记录的中亚干旱区东部全新世气候与环境演化[J]. 冰川冻土, 2021, 43(3): 818-826 doi:10.7522/j.issn.1000-0240.2021.0023

FAN Yijiao, MA Xiaoyi, LIU Hui, WANG Shuyuan, YANG Junhuai, CHEN Zixuan, GAO Fuyuan, JIA Jia, XIA Dunsheng. Climatic and environmental evolution during the Holocene in the eastern Arid Central Asia recorded by loess-paleosol sequences[J]. Journal of Glaciology and Geocryology, 2021, 43(3): 818-826 doi:10.7522/j.issn.1000-0240.2021.0023

0 引言

新疆天山地区位于欧亚大陆内部、距离各大洋较远,属于亚洲中部干旱区的重要组成部分。受地形地势的影响,黄土多分布于河谷阶地和山前平原1,如伊犁盆地、准噶尔盆地南缘和塔里木盆地北缘。新疆天山地区黄土研究对于揭示亚洲内陆干旱化、粉尘搬运堆积、大气环流和气候环境变化具有重要意义2-3

作为黄土研究中常用的气候代用指标,磁学参数(χARM/SIRM)和亮度(L*)在黄土高原和中亚干旱区黄土古气候研究中得到了广泛的应用,在指示成壤强度与有机质含量、揭示湿度演化方面具有重要意义4。前人通过对全新世多个黄土沉积的磁学参数、亮度、粒度、地球化学等指标的对比研究,指出中亚干旱区的湿度演化在中晚全新世以来呈现逐渐增加的趋势5-6。然而,以上基于磁学参数、亮度等重建的黄土古气候研究仅集中于湿度演化,关于区域植被和生态系统对相应气候环境的响应变化研究较少。土壤有机碳/氮同位素(δ13Corgδ15N)主要来源于上覆植被的贡献7-9,利用土壤中的碳/氮同位素组成可以重建古植被和古气候环境的演化。Rao等10较早对伊犁盆地黄土δ13Corg进行研究,发现该区域至少在末次冰期以来都是由C3植物占据主导地位,并根据地层与δ13Corg变化的关系进一步提出该指标在重建降水方面具有较大潜力,并得到了广泛的应用11-12。此外,来自黄土高原和西欧黄土研究表明土壤δ15N组成在揭示地表生态系统环境变化与示踪方面具有重要指示意义13,但是目前在中亚干旱区黄土中的应用较少,这在一定程度上限制了人们对中亚干旱区东部地质历史时期以来的气候及生态环境响应的理解。

鉴于此,本文对新疆伊犁盆地KS16黄土剖面进行磁学、亮度和有机碳/氮同位素等多指标综合分析,结合天山北麓LJW10剖面已发表的δ13Corg记录、同时测定该剖面的δ15N指标,探讨了新疆天山地区地表植被和生态系统变化及其对气候环境的响应,旨在更好地理解中亚干旱区东部地区全新世时期的气候变化和生态环境的协同作用。

1 研究区与剖面概况

新疆天山位于中亚干旱区东部,黄土多呈条带状分布于天山北坡的山麓带和伊犁河谷的河流阶地上1。该区域属于温带大陆性气候,常年受到西风控制:春夏季降水相对较多,主要来自西风环流携带的北大西洋及沿途湖泊水汽,部分水汽由北冰洋贡献;冬季受西伯利亚高压的影响,西风带北支向南移动导致降水较少14。天山北部为准噶尔盆地,气候相对干旱,分布有广阔的沙漠和戈壁,为北坡黄土沉积提供潜在粉尘物源。从准噶尔盆地到天山北坡,气候呈现明显的垂直地带性分布,温度随海拔的升高逐渐降低,降水量相应地从150 mm逐渐增加至500 mm15。伊犁盆地气候相对湿润,开口向西的喇叭状地形有利于北大西洋水汽的长驱直入,受地形阻挡,西部平原地区降水量在200~500 mm之间,东部山区高达800 mm,年平均气温大约在2.6~9.2 ℃之间16

本研究选取的KS16和LJW10剖面分别位于伊犁盆地东部和天山北坡(图1)。其中KS16剖面(43°25′56″ N,83°56′35″ E,海拔1 314 m)厚2 m,上部0.3 m为古土壤层,下部1.7 m为黄土层。团队成员采用石英单片再生剂量法对14个光释光样品进行定年,建立的年代框架表明该剖面底部年代大致为12 ka,具体年代结果及年龄深度模型参见文献[17]。LJW10剖面(43°58′29″ N,85°20′10″ E,海拔1 462 m)厚2.8 m,其中2.8 m~1.7 m为黄土沉积,1.7 m以上为全新世地层,又可以划分为黄土-古土壤亚层418。Li等18采用粗颗粒石英单片再生剂量法,结合中粒径和粗粒径钾长石红外激发后红外释光测年方法(post-IR IRSL)对该剖面进行定年研究,底部年代约为16 ka。前人对该剖面的磁学、亮度4,粒度19以及有机碳同位素11等进行了系统研究,本文主要对其δ15N进行测定和分析。

图1

图1   研究区与剖面位置

Fig.1   Study area and location of sections


2 实验方法

本研究对KS16剖面的磁学参数(χARM、SIRM)、亮度(L*)以2 cm间隔进行测定,有机碳/氮同位素(δ13Corgδ15N)以4 cm间隔测定;LJW10剖面δ15N以4 cm间隔测定。磁学参数和亮度在兰州大学西部环境教育部重点实验室完成,δ13Corgδ15N在兰州大学草地农业生态系统国家重点实验室完成。

非磁滞剩磁(ARM)是在直流磁场强度为0.05 mT叠加逐渐减弱的交变磁场(峰值为100 mT)后,使用Molspin Minispin小旋转磁力仪(JR-6A)测量,并换算为非磁滞剩磁磁化率(χARM);等温剩磁(IRM)使用ASCIM-10-30型脉冲强磁仪获得,样品在外加1 T磁场后使用JR-6A进行测量,所获得的等温剩磁为饱和等温剩磁(SIRM)。亮度使用X-Rite 948型分光色度计量器,将研磨至粉末的样品连续测试三次,以保证误差小于0.07。

δ13Corgδ15N测定之前,采用酸洗法去除样品中碳酸盐部分11,所有处理好的样品根据碳、氮含量确定称样量。使用装有连续进样装置的Finnigan MAT253稳定同位素质谱仪测定样品δ13Corgδ15N,测试过程中每隔5个样品加入1个标样[尿素标样,δ13CV-PDB=(-27.46±0.11)‰,δ15NAIR=(6.70±0.15)‰]确保仪器稳定、测试结果准确可靠。样品的δ13Corgδ15N组成分别相对于VPDB(Vienna Pee Dee Belemnite)和大气N2标准的千分之一(‰)变化。

3 各指标的气候环境指示意义

3.1 χARM/SIRM和L*

χARM能够灵敏反映磁性矿物中的单畴(SD)颗粒含量,SIRM指示样品中亚铁磁性矿物和不完全反铁磁性矿物的含量20。二者比值χARM/SIRM通常被用于指示成壤作用,高值表明较细磁性颗粒所占比例大,成壤作用增强。亮度L*反映土壤发育程度,与有机质含量密切相关,L*值越低,指示有机质含量较高,进而反映区域植被覆盖和生物量21-22。χARM/SIRM和L*指标已被广泛应用于恢复和重建干旱、半干旱地区的气候环境演化4-5

3.2 δ13Corg

土壤有机质主要来源于上覆植被,因此黄土δ13Corg很大程度依赖于上覆植被δ13C23-24。陆地植被主要分为C3、C4和CAM植物,其中C3植物δ13C位于-22‰~-32‰,平均值为-27‰,C4植物δ13C位于 -9‰~-19‰,均值为-13‰25。植物在进行光合作用过程中,碳同位素分馏很大程度受气候的影响,根据Farquhar等26提出的C3植物δ13C分馏模式,在相对潮湿的条件下,C3植物的δ13C通常更偏负,因为在湿润环境中C3植物的气孔导度相对较高,进而增加细胞间的CO2分压,导致δ13C值偏负;在干旱条件下,植物为了维持水分供应关闭气孔,使得植物的气孔导度低,植物叶片细胞间的CO2浓度降低,植物固定CO2能力减弱,最终导致植物δ13C值升高。因此植被δ13C变化与水分条件密切相关,大量的现代植被和表土δ13Corg研究发现中亚干旱区主要由C3植物占据主导地位,并且δ13Corg与降水量之间呈现明显的负相关性11-1227-28,这一关系被广泛应用于该区域降水量的重建11-1229,并得到数值模拟结果的支持11。此后,中亚干旱区黄土δ13Corg多用于讨论区域湿度的演化,如新疆天山地区LJW1011、TLD剖面30,伊朗YE剖面29和哈萨克斯坦VA剖面31δ13Corg记录都表明中亚干旱区中晚全新世湿度逐渐增加(图2)。因此,本研究将δ13Corg作为区域降水量变化的指标,进而指示湿度演化。

图2

图2   中亚干旱区黄土δ13Corg记录对比

Fig.2   The comparison of loess δ13Corg records in arid Central Asia


3.3 δ15N

中亚干旱区关于土壤δ15N与气候环境之间的现代过程研究几乎空白,无法区分单一的温度、降水对土壤δ15N的影响。尽管在全球尺度上,上覆植被及土壤δ15N与温度呈正相关、与降水量呈反相关32,但这一关系存在区域差异性:如黄土高原地区,现代植被和表土δ15N随降水量的增加逐渐偏负13;而在年均降水量小于600 mm的草原生态系统中,土壤δ15N随降水量的增加逐渐偏正33。由于缺少区域现代过程的研究,土壤δ15N无法用于重建单一气候因子的变化。但是,黄土高原西峰8和渭南9剖面,西欧Belotinac34、Tokaj35和Crvenka36等剖面黄土δ15N研究都表明,间冰期和相对暖湿的环境与δ15N高值相对应,同时生态系统生产力相对提高以及氮循环相对开放,而冰期和相对冷干的环境则相反(图3)。因此,本研究将土壤δ15N作为指示地表生态系统生产力的指标,进而反映区域环境演化。

图3

图3   黄土高原8-9(a, b)和西欧34-36(c, d, e)黄土-古土壤序列δ15N变化(灰色阴影表示间冰期和暖湿期)

Fig.3   Variation of δ15N of loess-paleosol sequences in Chinese Loess Plateau8-9 (a, b) and Western Europe34-36 (c, d, e) (The grey shaded areas represent interglacial and warm-humid periods)


4 结果与分析

4.1 χARM/SIRM和L*

图4所示,KS16剖面χARM/SIRM与χlf、χfd15变化较为一致,峰谷变化整体与地层对应[图4(a)~(c)]。在2.0~1.0 m,χARM/SIRM值较低,在6.73×10-5~11.6×10-5 mA-1之间变化;1.0 m以上地层尤其是0.6 m以上,χARM/SIRM逐渐增大,指示成壤作用增强。KS16剖面L*在53.7~70.5之间变化[图4(d)],与磁学指标的变化相似,从0.6 m开始L*值逐渐降低,说明有机质含量逐渐增加。

图4

图4   KS16剖面地层和磁学参数、亮度变化(年代结果、χlf和χfd来自文献[17])

Fig.4   Stratigraphy and variation of magnetic parameters and lightness on KS16 section (The age results, χlf and χfd were modified from Reference [17])


4.2 δ13Corgδ15N

图5(a)所示,KS16剖面δ13Corg在-25.31‰~ -22.68‰之间波动,均值为-23.43‰,表明C3植物占据主导。下部地层δ13Corg整体波动较小,0.6 m之上的δ13Corg与χARM/SIRM、L*变化一致,越往上部地层越偏负;该剖面δ15N在2.15‰~5.00‰之间变化,均值为4.00‰,整体呈现偏正的变化趋势。LJW10剖面δ15N在3.63~7.14‰之间变化,均值为5.49‰,下部2.0~1.7 m黄土层δ15N值最低,1.5 m以上地层黄土δ15N逐渐偏正[图5(b)]。需要指出的是,由于地层下部样品氮含量特别低,导致仪器无法准确测定土壤δ15N,因此KS16剖面仅测定上部1 m,LJW10剖面测定上部1.7 m。

图5

图5   KS16和LJW10剖面地层与δ13Corgδ15N变化(KS16剖面年代来自文献[17],LJW10剖面年代来自文献[18]、δ13Corg来自文献[11])

Fig.5   Stratigraphy and variations of δ13Corg and δ15N on KS16 and LJW10 sections (The ages of KS16 are from Reference [17], the ages and δ13Corg of LJW10 section are from Reference [18] and Reference [11], respectively)


5 全新世气候与环境演化

为了更好地理解新疆天山地区气候环境演变及其与中亚干旱区和北半球高纬地区气候的联系,将本研究的结果与周边区域及北半球高纬度记录进行对比讨论(图6)。KS16剖面黄土δ13Corg在 -22.5‰~-25.5‰之间变化,尽管植物凋落、腐烂、埋藏过程中会发生1‰的分馏37,剖面δ13Corg记录仍然表明全新世期间该区域植被由C3植物主导。根据δ13Corg与降水量的关系,早全新世时期δ13Corg相对高值指示低降水量,而在中晚全新世逐渐偏负的δ13Corg则指示降水相应增加[图6(c)]。两个剖面δ15N记录都表现为偏正变化趋势,指示中晚全新世地表生态系统生产力增强[图6(d)~(e)]。结合KS16剖面各指标的变化,早全新世χARM/SIRM、L*δ13Corg记录的低湿度表明此时新疆天山地区气候相对冷干,有机质和植被覆盖度低、成壤微弱;中晚全新世,χARM/SIRM、L*δ13Corg记录的湿度显著增加,同时δ15N呈现偏正变化[图6(a)~(d)],指示相对开放的地表生态系统生产力,说明该区域在湿度增加背景下,植被覆盖增多、有机质含量增加、成壤增强。尽管两个剖面下部地层的δ15N无法测定,但间接反映当时气候环境整体干旱,地表植被覆盖度低,生态系统生产力较弱,土壤氮含量较低;中晚全新世,在温度38和湿度39增加的背景下[图6(g)~(h)],地表植被环境改善,生态系统生产力和氮循环开放程度相应增强,土壤δ15N逐渐偏正变化,这也进一步说明该区域气候适宜期出现在晚全新世40-41

图6

图6   两个剖面记录的全新世气候环境(a~d为KS16剖面记录,e为LJW10剖面记录)与区域及北半球记录对比(f为TLD剖面蜗牛化石总数30,g为新疆区域湿度集成曲线38,h为基于阿尔泰山泥炭α-纤维素δ13C重建的温度曲线39,i为北半球高纬度冰盖面积变化44,j为北半球高纬度太阳辐射45

Fig.6   Regional climatic environment during the Holocene recorded by two loess sections (a~d are records from KS16 section, e is from LJW10 section) and their comparison with regional and northern hemisphere records (f is the total count fossils from TLD section30, g is the synthesis of moisture changes in Xinjiang region38, h is the reconstructed temperature variation from the peat α-cellulose δ13C of Altai Mountains39, i is the variation of northern hemisphere high-latitude ice sheets in million km2[44, j is the northern hemisphere summer insolation45


新疆天山其他地区黄土记录的全新世气候环境与本研究的结果较为一致:Duan等42基于天山北麓多个黄土剖面及地层年代结果发现古土壤形成时期主要发生在晚全新世,基于烧失量反映的碳酸盐含量及粒度端元模型分离出来的西风组分的变化都指示全新世以来呈现逐渐湿润的趋势;陆生蜗牛化石数量能够反映植被生态及蜗牛生存环境,早全新世的蜗牛化石数量较低而在晚全新世达到最高值[图6(f)],逐渐偏负变化的δ13Corg和显著增加的烧失量都表明晚全新世湿润的气候环境为蜗牛生长提供适宜的生存环境和充足的食物来源30;Kang等6对该区域多个黄土剖面的磁化率、粒度参数的分析,发现中晚全新世有效湿度逐渐增加。此外,多个黄土剖面的各项环境指标进一步证实新疆天山地区黄土沉积记录了中晚全新世湿度环境的增强41941,有利于古土壤发育、植被覆盖增加及地表生态系统生产力的增强。

本研究中黄土沉积记录的区域环境呈现早全新世期间相对干旱,中晚全新世湿度逐渐增加的特征。Chen等443结合地质记录与数值模拟,认为早全新世较强的夏季太阳辐射[图6(j)],使得温度升高,加速北半球高纬度地区剩余冰盖的撤退与融化[图6(i)],大量冰融水进入北大西洋进而抑制表层水汽的蒸发;而相对较弱的冬季太阳辐射使中-高纬度之间的经向温度梯度减小,降低西风环流的强度,同时该区域上风向的水体(地中海、里海和黑海)蒸发减弱,导致西风环流携带至新疆天山地区的水汽减少。此外,外部边界条件(大气CO246以及较强的夏季太阳辐射使得该区域地表蒸发增强47对早全新世干旱环境也有重要影响。相反,在中晚全新世北半球高纬度冰盖基本融化的背景下,随着夏季太阳辐射的减弱和冬季太阳辐射的增强,较强的西风环流携带更多水汽致使该区域降水增加43,为生物、植被生长和土壤发育提供充足条件,因此这一时期普遍发育古土壤,地表植被覆盖增加且生态系统生产力增强。

6 结论

本研究以新疆天山地区的KS16和LJW10黄土剖面为研究对象,结合常规指标(χARM/SIRM、L*)和δ13Corgδ15N记录对研究区内全新世气候环境进行重建。研究结果表明:早全新世,χARM/SIRM、L*δ13Corg记录表明成壤较弱,植被覆盖少,有机质含量低,说明该时期呈现相对干旱的气候环境;中晚全新世,偏正变化的δ15N指示地表生态系统生产力增强,植被覆盖增多,与χARM/SIRM、L*δ13Corg记录的湿度增加近乎同步,反映该区域处于全新世适宜期。本研究结果与区域其他黄土剖面记录的全新世气候环境演化相一致,表现为早全新世相对干旱,中晚全新世湿度逐渐增加、地表生态系统生产力增强,这种气候环境演化特征与北半球高纬冰盖面积、太阳辐射强度的变化密切相关。

谨以此文,纪念李吉均院士!

参考文献

Clark M KFarley K AZheng Dewenet al.

Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U-Th)/He ages

[J]. Earth and Planetary Science Letters, 20102961/2): 78-88.

[本文引用: 2]

Yin An.

Cenozoic tectonic evolution of Asia: a preliminary synthesis

[J]. Tectonophysics, 20104881/2/3/4): 293-325.

[本文引用: 1]

Ye WeiSang ChangqingZhao Xingyou.

Spatial-temporal distribution of loess and source of dust in Xinjiang

[J]. Journal of Desert Research, 2003235): 514-520.

[本文引用: 2]

Zhang GuoweiGuo AnlinYao Anping.

Western Qinling-Songpan continental tectonic node in China’s continental tectonics

[J]. Earth Science Frontiers, 2004113): 23-32.

[本文引用: 1]

叶玮桑长青赵兴有.

新疆黄土分布规律及粉尘来源

[J]. 中国沙漠, 2003235): 514-520.

[本文引用: 2]

张国伟郭安林姚安平.

中国大陆构造中的西秦岭-松潘大陆构造结

[J]. 地学前缘, 2004113): 23-32.

[本文引用: 1]

Song YouguiLai ZhongpingLi Yunet al.

Comparison between luminescence and radiocarbon dating of late Quaternary loess from the Ili Basin in Central Asia

[J]. Quaternary Geochronology, 201530405-410.

[本文引用: 1]

Wang XianyanLu HuayuVandenberghe Jet al.

Late Miocene uplift of the NE Tibetan Plateau inferred from basin filling, planation and fluvial terraces in the Huang Shui catchment

[J]. Global and Planetary Change, 201288/8910-19.

[本文引用: 6]

Li Jijun.

The patterns of environmental changes since late Pleistocene in northwestern China

[J]. Quaternary Sciences, 1990103): 197-204.

[本文引用: 1]

李吉均.

中国西北地区晚更新世以来环境变迁模式

[J]. 第四纪研究, 1990103): 197-204.

[本文引用: 1]

Fang XiaominFang YahuiZan Jinboet al.

Cenozoic magnetostratigraphy of the Xining Basin, NE Tibetan Plateau, and its constraints on paleontological, sedimentological and tectonomorphological evolution

[J]. Earth-Science Reviews, 2019190460-485.

[本文引用: 2]

Chen FahuJia JiaChen Jianhuiet al.

A persistent Holocene wetting trend in arid Central Asia, with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China

[J]. Quaternary Science Reviews, 2016146134-146.

[本文引用: 6]

Wang WeitaoZheng DewenLi Chaopenget al.

Cenozoic exhumation of the Qilian Shan in the northeastern Tibetan Plateau: evidence from low-temperature thermochronology

[J]. Tectonics, 2020394): e2019TC005705.

[本文引用: 2]

Li Jinjun. Tibetan Plateau uplift and the climate changes of Asia[M]. BeijingScience Press2006.

[本文引用: 1]

Gao FuyuanJia JiaXia Dunshenget al.

Assessment of the dominant climatic factor affecting pedogenic development in eolian sequences during the Holocene in arid Central Asia

[J]. Quaternary International, 201950278-84.

[本文引用: 2]

李吉均. 青藏高原隆升与亚洲环境演变[M]. 北京科学出版社2006.

[本文引用: 1]

Kang ShugangWang XulongRoberts H Met al.

Increasing effective moisture during the Holocene in the semiarid regions of the Yili Basin, Central Asia: evidence from loess sections

[J]. Quaternary Science Reviews, 2020246106553.

[本文引用: 2]

Duvall A RClark M Kvan der Pluijm Bet al.

Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry

[J]. Earth and Planetary Science Letters, 20113043/4): 520-526.

[本文引用: 3]

Hatté CAntoine PFontugne Met al.

δ13C of loess organic matter as a potential proxy for paleoprecipitation

[J]. Quaternary Research, 2001551): 33-38.

[本文引用: 1]

Liu JunchiLiu Weiguo.

Soil nitrogen isotopic composition of the Xifeng loess-paleosol sequence and its potential for use as a paleoenvironmental proxy

[J]. Quaternary International, 201744035-41.

[本文引用: 3]

Guo JinjingWang KaixuanHan Wenfenget al.

Cenozoic kinematic history of the Lintan-Minxian-Tanchang Fault in West Qinling and its dynamic process

[J]. Northwestern Geology, 2018513): 80-92.

[本文引用: 4]

Liu JiangsiAlgeo T JYang Huanet al.

Changes in vegetation type on the Chinese Loess Plateau since 75 ka related to East Asian summer monsoon variation

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018510124-139.

[本文引用: 4]

郭进京王凯旋韩文峰.

西秦岭临潭-岷县-宕昌断裂带新生代运动学历史及动力学分析

[J]. 西北地质, 2018513): 80-92.

[本文引用: 4]

Enkelmann ERatschbacher LJonckheere Ret al.

Cenozoic exhumation and deformation of northeastern Tibet and the Qinling: Is Tibetan lower crustal flow diverging around the Sichuan Basin?

[J]. Geological Society of America Bulletin, 20061185/6): 651-671.

[本文引用: 1]

Rao ZhiguoXu YuanbinXia Dunshenget al.

Variation and paleoclimatic significance of organic carbon isotopes of Ili loess in arid Central Asia

[J]. Organic Geochemistry, 20136356-63.

[本文引用: 1]

Zheng DewenZhang PeizhenWan Jinlinet al.

Rapid exhumation at ~8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: implications for growth of the northeastern Tibetan Plateau margin

[J]. Earth and Planetary Science Letters, 2006248198-208.

[本文引用: 9]

Xie HaichaoZhang HuiwenMa Jianyinget al.

Trend of increasing Holocene summer precipitation in arid Central Asia: evidence from an organic carbon isotopic record from the LJW10 loess section in Xinjiang, NW China

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 201850924-32.

[本文引用: 9]

Lease R OBurbank D WClark M Ket al.

Middle Miocene reorganization of deformation along the northeastern Tibetan Plateau

[J]. Geology, 2011394): 359-362.

[本文引用: 3]

Wang QiangWang XinWei Haitaoet al.

Climatic significance of the stable carbon isotopic composition of surface soils in northern Iran and its application to an early Pleistocene loess section

[J]. Organic Geochemistry, 2019127104-114.

[本文引用: 3]

Clark M KRoyden L HWhipple K Xet al.

Use of a regional, relict landscape to measure vertical deformation of the eastern Tibetan Plateau

[J]. Journal of Geophysical Research: Earth Surface, 2006111F03002.

[本文引用: 2]

Liu WeiguoWang Zheng.

Nitrogen isotopic composition of plant-soil in the Loess Plateau and its responding to environmental change

[J]. Chinese Science Bulletin, 2009542): 272-279.

[本文引用: 2]

van der Beek PMelle J VGuillot Set al.

Eocene Tibetan Plateau remnants preserved in the northwest Himalaya

[J]. Nature Geoscience, 200925): 364-368.

[本文引用: 1]

刘卫国王政.

黄土高原现代植物-土壤氮同位素组成及对环境变化的响应

[J]. 科学通报, 20085323): 2917-2924.

[本文引用: 2]

Hetzel RDunkl IHaider Vet al.

Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift

[J]. Geology, 2013419): 297-298.

[本文引用: 2]

Aizen V BAizen E MJoswiak D Ret al.

Climatic and atmospheric circulation pattern variability from ice-core isotope/geochemistry records (Altai, Tien Shan and Tibet)

[J]. Annals of Glaciology, 2006431): 49-60.

[本文引用: 1]

Li JijunZhou ShangzheZhao Zhijunet al.

The Qingzang Movement: the major uplift of the Qinghai-Tibetan Plateau

[J]. Science China: Earth Sciences, 20154510): 1597-1608.

[本文引用: 1]

Zhang JianxinLiao FeijiaZhang Lei.

Evaluation of the effect of evaporation on water capacity of precipitation in the north slope of the middle Tienshan Mountains

[C]// Proceedings of 2006 annual meeting of Chinese Meteorological Society: symposium on weather modification technology. BeijingChina Meteorological Society200621-23. [

[本文引用: 2]

李吉均周尚哲赵志军.

论青藏运动主幕

[J]. 中国科学: 地球科学, 20154510): 1597-1608.

[本文引用: 1]

Chen XuanhuaShao ZhaogangXiong Xiaosonget al.

Fault system, deep structure and tectonic evolution of the Qilian Orogenic Belt, Northwest China

[J]. Geology in China, 2019465): 995-1020.

[本文引用: 5]

张建新廖飞佳张磊.

中天山北坡蒸发对降水产水能力影响的评估

[C]//中国气象学会2006年年会“人工影响天气作业技术专题研讨会”分会场论文集. 北京中国气象学会200621-23.]

[本文引用: 2]

陈宣华邵兆刚熊小松.

祁连造山带断裂构造体系、深部结构与构造演化

[J]. 中国地质, 2019465): 995-1020.

[本文引用: 5]

Ye Wei.

Characteristics of physical environment and conditions of loess formation in Yili area, Xinjiang

[J]. Arid Land Geography, 1999223): 9-16.

[本文引用: 1]

Liu ShaofengZhang GuoweiFeng Panet al.

Timing of Xunhua and Guide Basin development and growth of the northeastern Tibetan Plateau, China

[J]. Basin Research, 2013251): 74-96.

[本文引用: 4]

叶玮.

新疆伊犁地区自然环境特点与黄土形成条件

[J]. 干旱区地理, 1999223): 9-16.

[本文引用: 1]

Jia JiaChen JianhuiWang Zhiyuanet al.

No evidence for an anti-phased Holocene moisture regime in mountains and basins in Central Asian: records from Ili loess, Xinjiang

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021572110407.

[本文引用: 5]

Zattin MWang Xiuxi.

Exhumation of the Western Qinling Mountain range and the building of the northeastern margin of the Tibetan Plateau

[J]. Journal of Asian Earth Sciences, 2019177307-313.

[本文引用: 2]

Pan BaotianGao HongshanLi Bingyuanet al.

Step-like landforms and uplift of the Qinghai-Xizang Plateau

[J]. Quaternary Sciences, 2004241): 50-57.

[本文引用: 1]

Li GuoqiangWen LijuanXia Dunshenget al.

Quartz OSL and K-feldspar pIRIR dating of a loess/paleosol sequence from arid Central Asia, Tianshan Mountains, NW China

[J]. Quaternary Geochronology, 20152840-53.

[本文引用: 4]

潘保田高红山李炳元.

青藏高原层状地貌与高原隆升

[J]. 第四纪研究, 2004241): 50-57.

[本文引用: 1]

Jia JiaLiu HaoGao Fuyuanet al.

Variations in the westerlies in Central Asia since 16 ka recorded by a loess section from the Tien Shan Mountains

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018504156-161.

[本文引用: 2]

Zheng JinpingGriffin WSun Mengruet al.

Tectonic affinity of the West Qinling terrane (central China): North China or Yangtze?

[J/OL]. Tectonics, 2010292) [2021-06-10]. .

URL     [本文引用: 1]

Evans M EHeller F.

Magnetism of loess/palaeosol sequences: recent developments

[J]. Earth-Science Reviews, 2001541/2/3): 129-144.

[本文引用: 1]

Sun YoubinHe LiuLiang Lianjiet al.

Changing color of Chinese loess: geochemical constraint and paleoclimatic significance

[J]. Journal of Asian Earth Sciences, 2011406): 1131-1138.

[本文引用: 1]

Ma ZhenhuaLi XiaomiaoGuo Benhonget al.

Extraction and analysis of Maxianshan planation surfaces in northeastern margin of the Tibetan Plateau

[J]. Acta Geographica Sinica, 2016713): 400-411.

[本文引用: 1]

马振华李小苗郭本泓.

青藏高原东北缘马衔山夷平面特征指标的提取与分析

[J]. 地理学报, 2016713): 400-411.

[本文引用: 1]

Yang ShilingDing Zhongli.

Color reflectance of Chinese loess and its implications for climate gradient changes during the last two glacial-interglacial cycles

[J]. Geophysical Research Letters, 20033020): 2058.

[本文引用: 1]

Hatté CFontugne MRousseau D Det al.

δ13C variations of loess organic matter as a record of the vegetation response to climatic changes during the Weichselian

[J]. Geology, 1998267): 583-586.

[本文引用: 1]

Liu Fenliang.

Geomorphological evolution and valley development of the lower Jinsha River during the late Cenozoic

[D]. LanzhouLanzhou University2018.

[本文引用: 1]

刘芬良.

晚新生代金沙江下游段地貌演化与河谷发育研究

[D]. 兰州兰州大学2018.

[本文引用: 1]

Liu WeiguoYang HongNing Youfenget al.

Contribution of inherent organic carbon to the bulk δ13C signal in loess deposits from the arid western Chinese Loess Plateau

[J]. Organic Geochemistry, 2007389): 1571-1579.

[本文引用: 1]

Haider V LKropáek JDunkl Iet al.

Identification of peneplains by multi-parameter assessment of digital elevation models

[J]. Earth Surface Processes and Landforms, 2015401477-1492.

[本文引用: 1]

Deines P.

The isotopic composition of reduced organic carbon

[M]// Fritz P, Fontes J Ch. Handbook of environmental isotope geochemistry: the terrestrial environment A. New YorkElsevier1980339-345.

[本文引用: 1]

Strobl MHetzel RNiedermann Set al.

Landscape evolution of a bedrock peneplain on the southern Tibetan Plateau revealed by in situ-produced cosmogenic 10Be and 21Ne

[J]. Geomorphology, 2012153/154192-204.

[本文引用: 1]

Farquhar G DEhleringer J RHubick K T.

Carbon isotope discrimination and photosynthesis

[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1989401): 503-537.

[本文引用: 1]

Feng JinliangCui ZhijiuZhu Lipinget al.

Review on the planation surface

[J]. Journal of Mountain Sciences, 2005231): 1-13.

[本文引用: 1]

Lee XinqingFeng ZhaodongGuo Lanlanet al.

Carbon isotope of bulk organic matter: a proxy for precipitation in the arid and semiarid Central Asia

[J]. Global Biogeochemical Cycles, 2005194): GB4010.

[本文引用: 1]

Rao ZhiguoGuo WenkangCao Jiantaoet al.

Relationship between the stable carbon isotopic composition of modern plants and surface soils and climate: a global review

[J]. Earth-Science Reviews, 2017165110-119.

[本文引用: 1]

冯金良崔之久朱立平.

夷平面研究评述

[J]. 山地学报, 2005231): 1-13.

[本文引用: 1]

Wang QiangWei HaitaoKhormali Fet al.

Holocene moisture variations in western arid Central Asia inferred from loess records from NE Iran

[J]. Geochemistry, Geophysics, Geosystems, 2020213): e2019GC008616.

[本文引用: 2]

Pan BaotianGao HongshanLi Jijun.

On problems of planation surface: a discussion on the planation surface in Qinghai-Xizang Plateau

[J]. Scientia Geographica Sinica, 2002225): 520-526.

[本文引用: 1]

Zong XiulanDong JibaoCheng Penget al.

Terrestrial mollusk records in the loess sequences from eastern Central Asia since the last deglaciation and their paleoenvironmental significance

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020556109890.

[本文引用: 4]

潘保田高红山李吉均.

关于夷平面的科学问题: 兼论青藏高原夷平面

[J]. 地理科学, 2002225): 520-526.

[本文引用: 1]

Wang Xiuxi.

Applications of low temperature thermochronology in the tectonogeomorphology evolution of the Tibetan Plateau

[J]. Advances in Earth Science, 2017323): 234-244.

[本文引用: 1]

Ran MinFeng Zhaodong.

Variation in carbon isotopic composition over the past ca. 46,000 yr in the loess-paleosol sequence in central Kazakhstan and paleoclimatic significance

[J]. Organic Geochemistry, 20147347-55.

[本文引用: 1]

王修喜.

低温热年代学在青藏高原构造地貌发育过程研究中的应用

[J]. 地球科学进展, 2017323): 234-244.

[本文引用: 1]

Amundson RAustin A TSchuur Eet al.

Global patterns of the isotopic composition of soil and plant nitrogen

[J]. Global Biogeochemical Cycles, 2003171): 1031.

[本文引用: 1]

Malusà M GFitzgerald P G.

Fission-track thermochronology and its application to geology

[M]. MilanItaly: University of Milano-Bicocca, 2018.

[本文引用: 2]

Zhou LeiSong MinghuaWang Shaoqianget al.

Patterns of soil δ15N and total N and their relationships with environmental factors on the Qinghai-Tibetan Plateau

[J]. Pedosphere, 2014242): 232-242.

[本文引用: 1]

Obreht IBuggle BCatto Net al.

The late Pleistocene Belotinac section (southern Serbia) at the southern limit of the European loess belt: environmental and climate reconstruction using grain size and stable C and N isotopes

[J]. Quaternary International, 201433417): 10-19.

[本文引用: 3]

Wang XiuxiZattin MLi Jijunet al.

Eocene to Pliocene exhumation history of the Tianshui-Huicheng region determined by apatite fission track thermochronology: implications for evolution of the northeastern Tibetan Plateau margin

[J]. Journal of Asian Earth Sciences, 2011421/2): 97-110.

[本文引用: 4]

Chen HongHu JianminWu Guoliet al.

Apatite fission-track thermochronological constraints on the pattern of late Mesozoic-Cenozoic uplift and exhumation of the Qinling Orogen, central China

[J]. Journal of Asian Earth Sciences, 2015114649-673.

[本文引用: 1]

Schatz A-KZech MBuggle Bet al.

The late Quaternary loess record of Tokaj, Hungary: reconstructing palaeoenvironment, vegetation and climate using stable C and N isotopes and biomarkers

[J]. Quaternary International, 20112401): 52-61.

[本文引用: 1]

He PengjuWang XiuxiSong Chunhuiet al.

Cenozoic evolution of the Western Qinling Mt. range based on thermochronologic and sedimentary records from the Wudu Basin, NE Tibetan Plateau

[J]. Journal of Asian Earth Sciences, 2017138484-494.

[本文引用: 1]

Zech RZech MMarković Set al.

Humid glacials, arid interglacials? Critical thoughts on pedogenesis and paleoclimate based on multi-proxy analyses of the loess-paleosol sequence Crvenka, Northern Serbia

[J]. Palaeoheography, Palaeoclimatology, Palaeoecology, 2013387165-175.

[本文引用: 3]

Wang Guo’anFeng XiahongHan Jiamaoet al.

Paleovegetation reconstruction using δ13C of soil organic matter

[J]. Biogeosciences, 200851325-1337.

[本文引用: 1]

Wang XiuxiSong ChunhuiZattin Met al.

Cenozoic pulsed deformation history of northeastern Tibetan Plateau reconstructed from fission-track thermochronology

[J]. Tectonophysics, 2016672/673212-227.

[本文引用: 1]

Wang WeiFeng Zhaodong.

Holocene moisture evolution across the Mongolian Plateau and its surrounding areas: a synthesis of climatic records

[J]. Earth-Science Reviews, 201312238-57.

[本文引用: 3]

Wang XiuxiDeng LizhenZattin Met al.

Palaeogene growth of the northeastern Tibetan Plateau: detrital fission track and sedimentary analysis of the Lanzhou Basin, NW China

[J]. Journal of Asian Earth Sciences, 20171471): 322-331.

[本文引用: 3]

Cui ZhijiuLi DewenWu Yongqiuet al.

The planation surfaces

[J]. Chinese Science Bulletin, 19984317): 3-14.

[本文引用: 1]

Wu DandanCao JiantaoJia Guodonget al.

Peat brGDGTs-based Holocene temperature history of the Altai Mountains in arid Central Asia

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020538109464.

[本文引用: 3]

Gao FuyuanJia JiaXia Dunshenget al.

Asynchronous Holocene climate optimum across mid-latitude Asia

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019518206-214.

[本文引用: 1]

崔之久李德文伍永秋.

关于夷平面

[J]. 科学通报, 19984317): 3-14.

[本文引用: 1]

Wang WeitaoKirby EZhang Peizhenet al.

Tertiary basin evolution along the northeastern margin of the Tibetan Plateau: evidence for basin formation during Oligocene transtension

[J]. Bulletin of the Geological Society of America, 20131253/4): 377-400.

[本文引用: 3]

Sun HuanyuSong YouguiChen Xiulinget al.

Holocene dust deposition in the Ili Basin and its implications for climate variations in Westerlies-dominated Central Asia

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020550109731.

[本文引用: 2]

Duan FutaoAn ChengbangWang Weiet al.

Dating of a late Quaternary loess section from the northern slope of the Tianshan Mountains (Xinjiang, China) and its paleoenvironmental significance

[J]. Quaternary International, 2020544104-112.

[本文引用: 1]

Lin XiubinChen HanlinWyrwoll K-Het al.

The uplift history of the Haiyuan-Liupan Shan region northeast of the present Tibetan Plateau: integrated constraint from stratigraphy and thermochronology

[J]. The Journal of Geology, 2011119372-393.

[本文引用: 1]

Wu JiabinGuo LichengXiong Shangfaet al.

New magnetic constraints on early-middle Miocene uplift of the Liupan Shan, northeastern margin of the Tibetan Plateau

[J]. Geochemistry, Geophysics, Geosystems, 2019201340-1357.

[本文引用: 3]

Chen FahuChen JianhuiHuang Weiet al.

Westerlies Asia and monsoonal Asia: spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales

[J]. Earth-Science Reviews, 2019192337-354.

[本文引用: 2]

Wang XiuxiLi JijunSong Chunhuiet al.

Late Cenozoic orogenic history of Western Qinling inferred from sedimentation of Tianshui Basin, northeastern margin of Tibetan Plateau

[J]. International Journal of Earth Sciences, 20111015): 1345-1356.

[本文引用: 3]

Dalton A SMargold MStokes C Ret al.

An updated radiocarbon-based ice margin chronology for the last deglaciation of the North American Ice Sheet Complex

[J]. Quaternary Science Reviews, 2020234106223.

[本文引用: 2]

Laskar JRobutel PJoutel Fet al.

A long-term numerical solution for the insolation quantities of the Earth

[J]. Astronomy and Astrophysics, 20044281): 261-285.

[本文引用: 2]

Qi BangshenHu DaogongYang Xiaoxiaoet al.

Paleoelevation of the Qilian Mountain inferred from carbon and oxygen isotopes of Cenozoic strata

[J]. Acta Geoscientica Sinica, 2015363): 323-332.

[本文引用: 1]

Long HaoShen JiChen Jianhuiet al.

Holocene moisture variations over the arid Central Asia revealed by a comprehensive sand-dune record from the central Tian Shan, NW China

[J]. Quaternary Science Reviews, 201717413-32.

[本文引用: 1]

Fang XiaominGarzione CVan der Voo Ret al.

Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China

[J]. Earth and Planetary Science Letters, 20032103/4): 545-560.

[本文引用: 2]

Zhang XiaojianJin LiyaChen Jieet al.

Detecting the relationship between moisture changes in arid Central Asia and East Asia during the Holocene by model-proxy comparison

[J]. Quaternary Science Reviews, 201717636-50.

[本文引用: 1]

Fang XiaominWang JiuyiZhang Weilinet al.

Tectonosedimentary evolution model of an intracontinental flexural (foreland) basin for paleoclimatic research

[J]. Global and Planetary Change, 201614578-97.

[本文引用: 1]

Zheng DewenZhang PeizhenWan Jinglinet al.

Late Cenozoic deformation subsequence in northeastern margin of Tibet-Detrital AFT records from Linxia Basin

[J]. Science in China: Series D, 200346(): 266-275.

[本文引用: 2]

Saylor J EJordan J CSundell K Eet al.

Topographic growth of the Jishi Shan and its impact on basin and hydrology evolution, NE Tibetan Plateau

[J]. Basin Research, 2018303): 544-563.

[本文引用: 2]

Lease R OBurbank D WHough Bet al.

Pulsed Miocene range growth in northeastern Tibet: insights from Xunhua Basin magnetostratigraphy and provenance

[J]. Geological Society of America Bulletin, 20121245/6): 657-677.

[本文引用: 2]

Chen ChihaoBai YanFang Xiaominet al.

A late Miocene terrestrial temperature history for the northeastern Tibetan Plateau’s period of tectonic expansion

[J]. Geophysical Research Letters, 2019468375-8386.

[本文引用: 1]

Yang RongshengFang XiaominMeng Qingquanet al.

Paleomagnetic constraints on the middle Miocene-early Pliocene stratigraphy in the Xining Basin, NE Tibetan Plateau, and the geologic implications

[J]. Geochemistry, Geophysics, Geosystems, 2017183741-3757.

[本文引用: 1]

Zhang JinWang YannanZhang Beihanget al.

Evolution of the NE Qinghai-Tibetan Plateau, constrained by the apatite fission track ages of the mountain ranges around the Xining Basin in NW China

[J]. Journal of Asian Earth Sciences, 20159710-23.

Dupont-Nivet GHoorn CKonert M.

Tibetan uplift prior to the Eocene-Oligocene climate transition: evidence from pollen analysis of the Xining Basin

[J]. Geology, 2008376): 987-990.

Dai ShuangFang XiaominDupont-Nivet Get al.

Magnetostratigraphy of Cenozoic sediments from the Xining Basin: tectonic implications for the northeastern Tibetan Plateau

[J/OL]. Journal of Geophysical Research: Solid Earth, 2006111(B11) [2021-06-10]. .

URL    

Hui ZhengchuangLi XiaomiaoMa Zhenhuaet al.

Miocene pollen assemblages from the Zeku Basin, northeastern Tibetan Plateau, and their palaeoecological and palaeoaltimetric implications

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018511419-432.

Qi BangshenHu DaogongYang Xiaoxiaoet al.

Apatite fission track evidence for the Cretaceous-Cenozoic cooling history of the Qilian Shan (NW China) and for stepwise northeastward growth of the northeastern Tibetan Plateau since early Eocene

[J]. Journal of Asian Earth Sciences, 201612428-41.

Liu YongjiangGenser JNeubauer Fet al.

40Ar/39Ar mineral ages from basement rocks in the eastern Kunlun Mountains, NW China, and their tectonic implications

[J]. Tectonophysics, 20053983/4): 199-224.

Lu HaijianWang EShi Xuhuaet al.

Cenozoic tectonic evolution of the Elashan Range and its surroundings, northern Tibetan Plateau as constrained by paleomagnetism and apatite fission track analyses

[J]. Tectonophysics, 2012580150-161.

Yuan WanmingDong JinquanWang Shichenget al.

Apatite fission track evidence for Neogene uplift in the eastern Kunlun Mountains, northern Qinghai-Tibet Plateau, China

[J]. Journal of Asian Earth Sciences, 2006276): 847-856.

Tian PengfeiYuan WanmingYang Xiaoyonget al.

Multi-stage tectonic events of the eastern Kunlun Mountains

northern Tibetan Plateau constrained by fission track thermochronology[J/OL]. Journal of Asian Earth Sciences, 20201982021-06-10]. .

URL    

Duvall A RClark M KKirby Eet al.

Low-temperature thermochronometry along the Kunlun and Haiyuan Faults, NE Tibetan Plateau: evidence for kinematic change during late-stage orogenesis

[J]. Tectonics, 2013325): 1190-1211.

Yan MaoduVandervoo RFang Xiaominet al.

Paleomagnetic evidence for a mid-Miocene clockwise rotation of about 25° of the Guide Basin area in NE Tibet

[J]. Earth and Planetary Science Letters, 20062411/2): 234-247.

Li JijunFang XiaominSong Chunhuiet al.

Late Miocene-Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes

[J]. Quaternary Research, 2014813): 400-423.

Royden L HBurchfiel B CHilst R.

The geological evolution of the Tibetan Plateau

[J]. Science, 20083215892): 1054-1058.

Botsyun SSepulchre PDonnadieu Yet al.

Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene

[J/OL]. Science, 20193636430) [2021-06-10]. .

URL    

Deng TaoWang XiaomingWu Feixianget al.

Review: implications of vertebrate fossils for paleo-elevations of the Tibetan Plateau

[J]. Global and Planetary Change, 201917458-69.

Spicer R ASu TaoValdes P Jet al.

Why the ‘Uplift of the Tibetan Plateau’ is a myth

[J]. National Science Review, 202081): 1-19.

Miao YunfaWu FuliHerrmann Met al.

Late early Oligocene East Asian summer monsoon in the NE Tibetan Plateau: evidence from a palynological record from the Lanzhou Basin, China

[J]. Journal of Asian Earth Sciences, 20137546-57.

Song BowenSpicer R AZhang Kexinet al.

Qaidam Basin leaf fossils show northeastern Tibet was high

wet and cool in the early Oligocene[J/OL]. Earth and Planetary Science Letters, 20205372021-06-10]. .

URL    

Zhuang GuangshengJohnstone S AHourigan Jet al.

Understanding the geologic evolution of northern Tibetan Plateau with multiple thermochronometers

[J]. Gondwana Research, 201858195-210.

/