东喀喇昆仑山昆常冰川近期跃动特征
1.
2.
3.
Characteristics of recent surging of Kunchhang Glacier, East Karakoram
1.
2.
3.
通讯作者:
编委: 武俊杰
收稿日期: 2020-09-25 修回日期: 2020-12-30
基金资助: |
|
Received: 2020-09-25 Revised: 2020-12-30
作者简介 About authors
杨婧睿,硕士研究生,主要从事冰川变化遥感研究.E-mail:
关键词:
Keywords:
本文引用格式
杨婧睿, 蒋宗立, 刘时银, 王欣, 张勇, 张震, 魏俊锋.
YANG Jingrui, JIANG Zongli, LIU Shiyin, WANG Xin, ZHANG Yong, ZHANG Zhen, WEI Junfeng.
0 引言
冰川根据运动特征可分为常态型冰川和跃动型冰川。跃动型冰川一般会经历两个阶段的交替,一个是以冰川物质快速从积蓄区向接收区转移的短期活跃阶段,其流速可能会增加10倍至1 000倍,并可能导致长度增加;另一个则是以末端停滞或后退为特征的通常持续10年或更长时间的恢复阶段[1]。在跃动阶段,冰川发生运动松弛性动力卸荷,冰流速度急剧增大,往往是常态运动冰川的1~2个量级,使大量冰体从上游向下游搬运,冰川上部表面急剧下降,而冰川中下部则急剧升高,冰舌末端向前迅速推进。而在恢复阶段则发生相反的过程,即冰川上游冰量重新增多,运动速度恢复常态,冰的前峰向下游推进,而下游被壅高的冰体在增大的消融作用下不断减薄,冰舌末端逐渐退缩,这个过程一直持续到下一次跃动[2]。跃动型冰川在所有冰川中只占很小的比例(数量小于1%)[3],集中的地区主要有:阿拉斯加及加拿大育空地区[1,4-5]、喀喇昆仑山[6-7]、帕米尔[8]、天山[9-10]、斯瓦尔巴群岛[11]、格陵兰岛[12]、冰岛[13]。亚洲高山地区(High Mountain Asia,HMA),尤其是帕米尔高原、喀喇昆仑山和天山,被认为是最活跃的冰川跃动带之一[14],其跃动发生率可达该区域全部冰川数量的10%以上[15]。
2000年以来,喀喇昆仑山西部和中部地区的冰川表现出频繁前进,并出现轻微的物质增加,这被称为喀喇昆仑异常[16]。Barrand等[15]将ASTER和Landsat等遥感图像与纸质地图结合,对Kotlyakov等[17]提供的喀喇昆仑山跃动型冰川分布的1∶50万地图进行了更新,采用多变量回归分析方法对喀喇昆仑山中部的150条冰川进行分析,通过冰川属性与所处环境的关系得到该区域12.6%的冰川为跃动型冰川。Copland等[18]通过冰川跃动所具有的典型特征,比如表面的环状冰碛、表面裂隙的快速变化以及末端快速推进等,发现冰川跃动的范围比以前报道得更加广泛,并且发生跃动的冰川数量也有所增加。当前东喀喇昆仑山的冰川跃动开始引起人们的关注,喀喇昆仑山东北部的North Gasherbrum冰川在2003—2007年间发生了跃动,导致冰川上部物质向下明显转移,冰舌表面高度显著增加,但冰川末端没有明显前进,Mayer等[19]就此事件对其机制进行研究,提出了一个包含基本滑动定律和冰下排水理论的冰川运动模型。
冰川跃动是冰川动力不稳定性的表现,它的发生既取决于环境因素(相对静态),也取决于触发因素(相对动态)。目前认为冰川跃动主要有两种触发机制[20]:一种是由于冰川底部温度的差异促进了底碛的变形,这种跃动开始加速/减速时不受任何季节控制[21];另一种是由于冰下孔隙水压力的改变而导致的不稳定,这种受水文调节的跃动具有快速加速和减速(即几天到几周)的特点[22],可能在排水效率低的冬季开始,而在夏季排水效率高的时候结束。对于喀喇昆仑山冰川跃动的机理而言,其触发机制具有异质性[6]。研究表明喀喇昆仑山的冰川跃动是由热力或冰下水文条件作用触发的,不同的冰川,由于其热力、水文条件和形态特征的不同,跃动的控制机理也各不相同。一方面,喀喇昆仑山的冰川跃动被认为是热力学控制而不是水文控制,这与该地区降水增加及冰川积累模式可能引起的高海拔地区变暖相吻合[23];另一方面,对单个跃动事件的观测又表明冰下水文条件的变化可能是其主要触发机制[19]。
遥感技术的应用及发展使得冰川时序的流速变化、表面高程变化、末端前进和形态特征的变化监测更加便捷,使得利用遥感技术快速识别和研究跃动型冰川成为可能[24]。合成孔径雷达(SAR)技术自20世纪末以来就得到了广泛的应用,目前利用SAR影像估算山地冰流速主要有三种方法:差分干涉雷达测量技术(D-InSAR)、偏移量跟踪技术、多孔径干涉测量技术(MAI)[25]。由于山地冰川运动速度较极地冰川要快得多,严重的去相干导致难以获取有效的干涉相位信息,采用特征追踪方法,即便在两景SAR影像失相干的情况下也可以比较准确测量距离向和方位向上的位移。Strozzi等[26]应用SAR偏移量跟踪方法估计冰川表面在SAR图像斜距和方位向上的运动速度,并对1992—1996年斯瓦尔巴群岛北部Monacobreen冰川跃动进行分析;Paul等[27]通过对喀喇昆仑山Hispar冰川时序的SAR及光学图像的分析得出其流速和表面特征的变化,从而推断该冰川跃动属于阿拉斯加型。因此,根据冰川跃动特征推断冰川跃动的机理是可行的途经。
目前详细的冰川跃动特征报道仍然很少,本文基于多源遥感数据,用以确定昆常冰川的时序流速变化、表面高程变化和边界变化,进而分析其跃动特征,为全面认识喀喇昆仑山冰川跃动机理提供更多的依据。
1 研究区概况
图1
图1
昆常冰川位置(图中标注了两个横剖面位置T-T', P-P'及主流线F-F')
Fig.1
Location of the Kunchhang Glacier (with two cross transverse profiles T-T', P-P' and the mainstream F-F')
2 数据与方法
2.1 数据来源
Sentinel-1 SAR是ESA继ERS、Envisat之后的C波段传感器,由共享同一轨道平面的两颗极地轨道卫星组成,重访周期为12天。本文使用Sentinel-1A的IW模式下5 m×20 m分辨率的数据进行冰川表面运动场的提取,以及Envisat-1/ASAR数据对昆常冰川支流的流速进行提取。同时使用了ITS_LIVE项目(
TerraSAR-X/TanDEM-X系统是德国宇航局(DLR)先后发射的两颗SAR卫星,它们相距300 m左右同时飞行,组成了一个双星分布式的SAR系统。本研究使用了该系统双基站(bi-static)下条带(stripmap)模式获取的SLC数据,即一发双收的条带模式数据,具有“0时间基线”的特点。SRTM DEM与TanDEM都采用InSAR技术进行地表高程模型测绘,研究表明其精度分别为±16 m和±10 m[30]。本文选取2000年获取的SRTM-C DEM和2012年、2014年的TSX/TDX数据用于昆常冰川表面高程变化计算。
ICESat-2(Ice,Clouds,and Land Elevation Satellite-2)是NASA在ICESat/GLAS之后发射的新一代激光测高卫星。本文获取了2018年10月以来ICESat-2的激光测高数据用来对比昆常冰川部分区域;同时对TSX/TDX DEM中的冰川区域做500 m的缓冲,之后提取剔除缓冲区后的非冰川区域的ICESat-2/ATLAS数据点来评价TSX/TDX的精度。
另外,本文使用Landsat影像用以确定支流冰川末端的变化情况;使用30 m分辨率的SRTM数字高程模型作参考DEM以对SAR数据进行基于地形的精配准。数据使用的具体情况见表1。
表1 本研究使用的遥感数据
Table 1
数据 | 日期(年-月-日) | 分辨率/m | 用途 |
---|---|---|---|
Landsat/TM | 1998-09-16 | 30 | 冰川表面变化分析 |
Landsat/TM | 2003-07-17 | 30 | 冰川表面变化分析 |
Landsat/TM | 2003-09-20 | 30 | 冰川表面变化分析 |
Landsat/TM | 2004-09-08 | 30 | 冰川表面变化分析 |
Landsat/TM | 2005-08-26 | 30 | 冰川表面变化分析 |
Landsat/TM | 2011-08-03 | 30 | 冰川表面变化分析 |
Landsat/OLI | 2015-08-30 | 30 | 冰川表面变化分析 |
Landsat/OLI | 2016-10-03 | 30 | 冰川表面变化分析 |
Landsat/OLI | 2017-09-20 | 30 | 冰川表面变化分析 |
Landsat/OLI | 2019-09-26 | 30 | 冰川表面变化分析 |
Envisat-1/ASAR | 2004-08-21 | 30 | 冰川流速监测 |
Envisat-1/ASAR | 2004-09-25 | 30 | 冰川流速监测 |
Envisat-1/ASAR | 2004-10-30 | 30 | 冰川流速监测 |
Envisat-1/ASAR | 2005-02-12 | 30 | 冰川流速监测 |
Envisat-1/ASAR | 2005-03-19 | 30 | 冰川流速监测 |
Envisat-1/ASAR | 2005-05-28 | 30 | 冰川流速监测 |
Envisat-1/ASAR | 2005-09-10 | 30 | 冰川流速监测 |
Sentinel-1A | 2014-10/2020-08 | 5 | 冰川流速监测 |
TSX/TDX | 2012-03-13 | 1.4 | 冰川高程变化监测 |
TSX/TDX | 2014-01-01 | 1.4 | 冰川高程变化监测 |
SRTM | 2000-02 | 30 | 冰川高程变化监测 |
ICESAT-2 | 2018-11 | 冰川高程变化监测 | |
ICESAT-2 | 2020-04 | 冰川高程变化监测 |
2.2 冰川表面流速与高程提取
2.2.1 冰川表面流速提取
本文对SAR影像使用特征跟踪的方法提取冰川运动速度,主要包括预处理,基于地形的精配准,主从影像的特征匹配,匹配特征点的偏移跟踪与偏移量计算以及考虑坡度影响的冰川表面流速提取。本文采用IW模式下的Sentinel-1A数据分辨率为5 m
本文对SAR数据的处理均在瑞士GAMMA软件平台下进行的,在数据处理过程中影像配准、多项式拟合以及数据重采样等操作也都存在一定误差,量化误差结果等于方位向和距离向的误差之和。系统处理过程误差主要来自影像轨道抖动误差和偏移跟踪的多项式拟合过程,GAMMA雷达数据处理平台的配准算法误差控制在0.01个像素范围内,对应Sentinel-1A距离向和方位向分别约为0.018 m和0.009 m,相对误差等于绝对误差除以观测时间,计算得日均流速误差约0.011 m。
非冰川区域被认为是静止区域,其包括了图像对的偏移估计、偏移值转换为表面流速以及系统误差等的误差源。SAR影像特征跟踪法的静止区域误差因搜索窗口的大小不同而产生差异。Huang等[31]就搜索窗口大小设置对光学和SAR图像特征匹配的误差进行了研究,证明了不同的窗口尺寸会导致不同的速度,并提出了平均速度梯度(AVG)方法,以改善特征跟踪中的窗口大小并获得最合适的流场。蒋宗立等[32]对静止区域的匹配误差通过设置不同大小窗口搜索结果进行比较分析,最终选择窗口尺寸为128
图2
2.2.2 冰川表面高程提取
通常假设在非冰川区域的高程没有变化,从而估算残余高程差带来的不确定性(σ)。通过计算,非冰川区域平均高程差(MED)为-1.77 m。使用非冰川区域的标准偏差(SD)可能高估样本的不确定性,因此通过平均值(SE)的标准误差来估计不确定性[35]。定义为
式中:N为空间去相关处理后的像元个数。
本研究将所有DEM空间分辨率统一为30 m,取空间去相关距离为600 m[36]。使用非冰川区高程变化差值的SE和MED计算总体误差。
经计算得到2000—2012年表面高程变化的总体误差σ=1.79 m,以同样的方法计算出2012—2014年表面高程变化的总体误差σ=1.37 m。2000—2012年和2012—2014年的非冰川区高程变化呈正态分布(图3)。
图3
ICESat-2/ATLAS数据为散点,提取非冰川区域的点与TSX/TDX高程值作差,对二者高差进行分析。标准差(SD)和均方根误差(RMSE)的公式为
式中:di为ICESat/ATLAS与TSX/TDX DEM的高程差;n为ICESat/ATLAS点在非冰川区的数量。ICESat-2/ATLAS非冰川区点分布及ICESat/ATLAS与TSX/TDX的高差统计分析如图4所示。
图4
图4
ICESat-2/ATLAS点分布及与TanDEM高程差值
Fig.4
Distribution of ICESat-2/ATLAS points and the elevation difference with TanDEM
3 结果与分析
3.1 冰川表面流速变化
将SAR图像对匹配的强度偏移值除以图像对时间间隔从而得到日均流速,包括2004年8月至2010年5月以及2014年10月至2020年8月间日均时序冰川表面流速数据(图5)。通常情况下山地冰川表面流速小于0.5 m·d-1[37],2007-04-28平均流速增加为0.61 m·d-1,开始显示出跃动趋势,2007-07-07平均流速降低,最低降至0.07 m·d-1,直到2008-06-21平均流速再次增加至0.61 m·d-1。接着对ITS_LIVE项目(
图5
图5
昆常冰川主干沿主流线日均流速变化
Fig.5
Variation of daily average velocity along the mainstream of the trunk of Kunchhang Glacier
图6
图6
2011—2014年昆常冰川主干沿主流线表面流速变化
Fig.6
Variation of surface velocity along the mainstream of the trunk of Kunchhang Glacier during 2011—2014
图7
图7
跃动期间两次快速流动的流速变化
Fig.7
Velocity variation of two rapid flows during the surge
图8
图8
跃动期间横剖面(T-T′和P-P′)表面流速变化
Fig.8
Surface velocities along the transverse profiles T-T′ and P-P′ during the surge
3.2 冰川表面高程变化
昆常冰川主干跃动在2007—2019年间,TSX/TDX DEM的高程变化可代表跃动时的冰川表面高程信息(图9)。高程变化中的异常值主要分布在地形坡度较大的区域,本文在计算中剔除了叠掩和阴影区域。沿昆常冰川主干的主流线分别提取2000—2012年和2012—2014年的表面高程变化[图10(a)],结果表明,冰川表面高程变化分布不均,2000—2012年冰川主流线上的积蓄区减薄约10 m左右;干流中部有隆起现象,平均增厚(10.19±1.79) m,出现明显的跃动前锋;末端以消融为主,平均减薄(39.71±1.79) m;2012—2014年隆起区域平均增厚(8.21±1.37) m并向下迁移,而冰川接收区表面高程继续减薄。本文获取了冰川积蓄区2018年以及冰川中部2020年的ICESat-2/ATLAS的激光测高数据,用于计算跃动后的冰川表面高程变化,由于ATLAS数据是沿航迹的离散点,只能覆盖昆常冰川主干部分区域[图9(b)],仍以有限点高程变化代表相应区域的高程变化(图11),图中显示,2014—2018年积蓄区除部分点轻微增高外,其余大部分测高点的高程降低,即积蓄区厚度在减薄,平均减薄(9.77±3.38) m,表明物质从积蓄区迁移到了接收区。根据2020年的ICESat-2/ATLAS激光测高数据,可以得到2014—2020年昆常冰川主干中部变化情况[图11(b)~(d)]:A-A′横断面平均减薄(10.89±3.38) m;B-B′横断面平均减薄(3.47±3.38) m;C-C′横断面平均增厚(19.67±3.38) m,这表明物质从积蓄区向接收区转移。
图9
图10
图10
昆常冰川沿主流线的高程变化
Fig.10
Elevation changes along the mainstream of Kunchhang Glacier
图11
图11
昆常冰川主干部分区域的高程变化
Fig.11
Elevation changesin some regionsof the trunk of Kunchhang Glacier
昆常冰川南分支于2004—2005年发生跃动,TSX/TDX的2012年高程可代表跃动后的冰川表面高程信息[图10(b)]。结果表明主流线上距末端2 500 m内的冰川表面高程增加,末端最大增厚(186.82±1.79) m,而积蓄区表面高程平均下降了(25.07±1.79) m,因跃动后表面高程变化相对滞后,相应的高程变化与实际跃动后的高程变化存在一定的偏差。
4 讨论
4.1 昆常冰川跃动特征
在两次跃动之间的时间称为跃动周期,它包括两个阶段,即跃动阶段和恢复阶段[2]。2000—2012年昆常冰川主干中部高程明显增加,出现明显的跃动前锋,冰舌及末端高程显著降低,符合跃动特征,说明此时冰川已经开始发生跃动;2012—2014年中部高程增加并向下推进,而冰舌下部高程仍在减薄,期间年均流速曲线符合跃动前锋形态且持续向前推进,处于冰川跃动的加速阶段;2014—2015年期间昆常冰川跃动速度有所减缓,2016年之后冰川主干经历两次快速运动期,第一次从2017-05-19开始到2017-07-30结束,最高流速达到2.36 m·d-1;第二次从2018-05-14开始到2018-07-25结束,最高流速达到2.12 m·d-1,都历时了2个月左右。2018年8月以后冰川进入恢复阶段,跃动结束。根据昆常冰川时序流速和表面高程变化,可以推断其跃动年份为2007—2019年。从Landsat影像中可以看出,昆常冰川主干末端为表碛覆盖,冰川物质以动力波的形式向下传输,但并未使末端显著前进,本次跃动前锋未超越上一次跃动的前锋终止位置。
与喀喇昆仑山东部的其他跃动冰川对比发现,昆常冰川与位于喀喇昆仑山脉中东部的Hispar冰川跃动特征较为相似。Hispar冰川在2015年春季被观测到最大流速高达14 m·d-1,夏季流速突然下降,2015年冬季至2016年春季流速再一次增加[27],其跃动被认为是与冰下水文状况的变化有关,因此归类为阿拉斯加型。昆常冰川也经历过两次短暂的快速运动,分别在2017年和2018年春季的开始,在夏季排水效率高的8月结束,并且结束持续时间较短,其特征符合冰下水文条件控制的跃动。近期在喀喇昆仑山中西部的Khurdopin冰川[38]、Kyagar冰川[39]以及Shispare冰川[40]也发生过跃动。Khurdopin冰川在2015—2017年的夏季具有最高的跃动速度,并且历史观测表明其跃动周期约为20年;Kyagar冰川跃动始于2014年融化季节,流速的演化表明其符合水文控制的跃动,并且推断其跃动周期约为15~20年;Shispare冰川跃动从2017年4—5月开始,到2019年6—7月结束,其中2018年6月初观测到Shispare冰川的跃动流速峰值约为(18±0.5) m·d-1,这是喀喇昆仑山使用SAR特征匹配方法所报道的最高流速。Shispare冰川与Kyagar冰川跃动类似,都以雪崩为主要补给来源,属于水文条件控制的跃动[41]。
本文通过分析发现昆常冰川跃动存在一些不同于已报道的跃动特征:昆常冰川相对于其他冰川高达每天数十米的跃动速度而言,其平均跃动速度相对较慢:2004—2008年该冰川积蓄区多次出现流速增加现象,显露出跃动开始的迹象;2008年之后冰川平均流速有所降低并趋于稳定,之后经历两次快速运动期,于2018年进入平静期;2019年5月及9月该冰川中上部区域平均流速两次增加且持续1~2个月;2020年5月昆常冰川中上部区域平均流速再一次增加至1.74 m·d-1。其次,观察到昆常冰川跃动持续期长达10年左右(2007—2019年),相对于水文控制的跃动持续期(1~2年)而言,可能更偏向于比如斯瓦尔巴德群岛的经典热条件控制的跃动(3~10年)[42],这表明其他因素可能也影响着跃动,比如Lovell等[43]认为喜马拉雅山脉Sabche冰川的跃动行为受到冰下地形的影响,因为在其山谷上方的狭窄区域存在碗状的凹陷区域,更利于冰川物质的堆积。推测昆常冰川积蓄区可能存在类似的粒雪盆。Raymond等[44]认为微跃动发生在融化季节,此时表面融化使得融水输入的速度要比前一个冬天输入的要快,这会导致系统中的水储存和冰床水压的增加,当水压达到足以使冰与冰床分离时,局部会产生微跃动。根据该冰川中上部区域平均流速于2004年9月、2019年5月和9月以及2020年5月短暂增加,推断冬春季大量雪崩使得昆常冰川的中上部区域很可能发生了微跃动,积蓄区雪崩/微跃动导致了跃动前锋(隆起)形成。
对比1980—2000年昆常冰川沿主流线的年均流速(图12),1989年相对于其他年份出现异常高值,可能发生了跃动,初步推断昆常冰川近两次跃动之间的间隔约为30年。根据2016年跃动开始之前发生过微跃动,推测昆常冰川在跃动前其中上部区域可能会发生微跃动,这可能能为识别跃动开始提供依据。另外,在其积蓄区每隔一段时间便出现异常高的流速值,可能是雪崩,印证了Gardner等[45]提出的喀喇昆仑山冰川跃动的发生可能受雪崩造成的碎屑物质异常堆积的影响;东喀喇昆仑山的冰川与西喀喇昆仑山的冰川相比,海拔位置相对更高,处于季风和西风降水的雨影区中,故降水量较大[46],并且积蓄区较为陡峭,在降水增多的趋势下,容易发生雪崩。
图12
图12
1987—2000年昆常冰川主干沿主流线流速变化
Fig.12
Velocity variation along the mainstream of the trunk of Kunchhang Glacier during 1987—2000
4.2 昆常冰川支流跃动情况
Landsat于1998年9月16日的影像显示[图13(b)],昆常五号冰川的末端存在冰湖,面积约为0.17 km2。通过对比1991年8月29日的影像,此冰湖为阻塞湖。2003年7月20日冰湖面积达到最大,约为0.5 km2,2005年8月26日,冰川末端前进,冰湖消失。
图13
比较不同时期的冰川边界发现:从1998年9月到2011年8月,昆常五号冰川的末端一直在前进[图13(e)]。1998年9月到2003年9月,冰舌末端缓慢向前推进0.11 km2,整体形态未发生明显改变。2003年9月到2004年9月,冰川末端大幅度推进,长度显著增加,这一年推进的面积增加了0.47 km2,冰舌的前端开始扩张,形态较一年前有显著变化。2004年9月到2005年8月,冰川末端继续向前推进,并且在这一年前端冰湖消失,冰川面积增加了0.78 km2。从2005年8月到2011年8月,分支末端持续推进,最终与昆常冰川主干汇合。
通过对比Landsat TM影像,可以判断昆常冰川南分支于2004—2005年发生跃动,致使冰湖消失。对Envisat/ASAR影像提取的主流线各时段表面流速进行分析,统计结果如图14所示。可知,从2004-08-21开始,流速变化很快,最高峰出现在距离末端大约9 km的位置,表面速度达到2 m·d-1;距离末端 6 km位置出现次高峰,表面速度达到1.8 m·d-1;2004-10-30到次年2月冬季整体流速减缓;2005-02-12至2005-03-19期间,冰川中部的两处区域流速显著增高,最高达1.6 m·d-1;2005年3月开始,流速整体变缓,到2005-05-28时流速降至0.25 m·d-1,2005年夏季冰川进入平静期。
图14
图14
昆常冰川南分支主流线上各时段表面流速
Fig.14
Surface velocity along the mainstream of the southern branch of Kunchhang Glacier in different periods
5 结论
本文基于多源遥感数据对东喀喇昆仑山的昆常冰川跃动过程中的流速与表面高程变化进行分析,结果表明:
(1)喀喇昆仑山东部的昆常冰川主干在跃动期(2007—2019年)内经历过两次快速运动,第一次从2017-05-19开始到2017-07-30结束;第二次从2018-05-14开始到2018-07-25结束;两次快速运动都在夏季排水效率高的8月结束,结束持续时间较短,推断该冰川跃动属于冰下水文控制的阿拉斯加型跃动,触发跃动的原因可能为积蓄区较多的降水、频繁的雪崩导致积蓄区物质增加而冰舌强烈的减薄,冰川物质分布不平衡导致物质快速从积蓄区以物质波的形式向接收区进行传输,冰川末端并未显著前进。昆常冰川中上部区域平均流速多次短暂增加,很可能发生了微跃动。对比ITS_LIVE计划中昆常冰川沿主流线的年均流速,初步确定昆常冰川近两次跃动之间的间隔约为30年。
(2)昆常冰川积蓄区雪崩使冰川物质堆积,从而导致2000—2012年主干中部隆起,高程明显增加;2012—2014年积蓄区继续减薄,隆起向下推移;结合流速变化,可以得出自2007年以来昆常冰川已经处于跃动前期。对比冰川积蓄区2018年以及冰川中部2020年的ICESat-2的激光测高数据,发现2014—2018年积蓄区厚度减薄,平均减薄(9.77±3.38) m;2014—2020年昆常冰川主干中部平均增厚(19.67±3.38) m。
(3)昆常冰川南分支在2004—2005年间发生跃动,致使分支末端的小冰湖完全被冲毁,2005年夏季进入平静期,其末端已与昆常冰川主干汇合。跃动后末端最大增厚(186.82±1.79) m,积蓄区表面高程平均下降了(25.07±1.79) m,2012—2014年时高程基本处于平衡状态。
参考文献
Characteristics of surge-type glaciers
[J].
The incidence of glacier surging in Svalbard: evidence from multivariate statistics
[J].
What are glacier surges?
[J].
Slow surge of Trapridge Glacier
TerritoryYukon, Canada[J/OL].
Heterogeneity in Karakoram glacier surges
[J].
Glacier surges in the north-west West Kunlun Shan inferred from 1972 to 2017 Landsat imagery
[J].
Monitoring surging glaciers of the Pamirs, central Asia, from space
[J].
Region-wide glacier mass budgets and area changes for the central Tien Shan between ~1975 and 1999 using Hexagon KH-9 imagery
[J].
Surge-type glaciers in the Tien Shan (Central Asia)
[J].
Surge of a small East Greenland glacier, 2001-2007, suggests Svalbard-type surge mechanism
[J].
The drumlin field and the geomorphology of the Mulajokull surge-type glacier, central Iceland
[J].
Climatic and geometric controls on the global distribution of surge-type glaciers: implications for a unifying model of surging
[J].
Multivariate controls on the incidence of glacier surging in the Karakoram Himalaya
[J].
2001-2010 glacier changes in the Central Karakoram National Park: a contribution to evaluate the magnitude and rate of the “Karakoram anomaly”
[J].
Fluctuations of unstable mountain glaciers: scale and character
[J].
Expanded and recently increased glacier surging in the Karakoram
[J].
A surge of North Gasherbrum Glacier, Karakoram, China
[J].
Initiation of glacier surges
[J].
Is there a single surge mechanism?
Contrasts in dynamics between glacier surges in Svalbard and other regions[J/OL].
Glacier surge mechanism: 1982-1983 surge of Variegated Glacier, Alaska
[J].
Karakoram glacier surge dynamics
[J/OL].
Recent surge behavior of Walsh Glacier revealed by remote sensing data
[J/OL].
Evaluation of methods for deriving mountain glacier velocities with ALOS PALSAR images: a case study of Skyang Glacier in central Karakoram
[J].
基于ALOS PALSAR数据的山地冰川流速估算方法比较: 以喀喇昆仑地区斯克洋坎力冰川为例
[J].
Glacier motion estimation using SAR offset-tracking procedures
[J].
The 2015 surge of Hispar Glacier in the Karakoram
[J].
The Karakoram anomaly? Glacier expansion and the ‘elevation effect’, Karakoram Himalaya
[J].
Characteristics of mass balance of summer-accumulation type glaciers in the Himalayas and Tibetan Plateau
[J].
Accuracy assessment of the global TanDEM-X digital elevation model with GPS data
[J].
Comparison of SAR and optical data in deriving glacier velocity with feature tracking
[J].
Surface velocity estimation of Yengisogat Glacier by using SAR feature-tracking
[J].
应用SAR特征匹配方法估计音苏盖提冰川表面流速
[J].
Recent mass balance of the Purogangri ice cap, central Tibetan Plateau, by means of differential X-band SAR interferometry
[J].
Glacier elevation and mass changes over the central Karakoram region estimated from TanDEM-X and SRTM/X-SAR digital elevation models
[J].
Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas
[J].
Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery
[J].
Surge-related topographic change of the glacier Sortebræ, East Greenland, derived from synthetic aperture radar interferometry
[J].
Brief communication: the Khurdopin glacier surge revisited: extreme flow velocities and formation of a dammed lake in 2017
[J].
Surge dynamics and lake outbursts of Kyagar Glacier, Karakoram
[J].
Ice-dams, outburst floods, and movement heterogeneity of glaciers, Karakoram
[J].
The hazardous
The duration of the active phase on surge-type glaciers: contrasts between Svalbard and other regions
[J].
Topographic controls on the surging behaviour of Sabche Glacier, Nepal (1967 to 2017)
[J].
Propagating strain anomalies during mini-surges of Variegated Glacier, Alaska, U.S.A.
[J].
A surge of Bualtar Glacier, Karakoram Range, Pakistan: a possible landslide trigger
[J].
The state and fate of Himalayan glaciers
[J].
/
〈 |
|
〉 |
