冰川冻土, 2022, 44(4): 1165-1174 doi: 10.7522/j.issn.1000-0240.2022.0108

冰冻圈与全球变化

1984—2019年念青唐古拉山中段冰川ELA变化估算及特征分析

李亚鹏,1, 张威,1, 柴乐2, 唐倩玉1, 葛润泽1, 孙波1

1.辽宁师范大学 地理科学学院,辽宁 大连 116029

2.东华理工大学 地球科学学院,江西 南昌 330013

Estimation and characteristic analysis of ELA variations in middle section of the Nyainqêntanglha Mountains from 1984 to 2019

LI Yapeng,1, ZHANG Wei,1, CHAI Le2, TANG Qianyu1, GE Runze1, SUN Bo1

1.School of Geography,Liaoning Normal University,Dalian 116029,Liaoning,China

2.School of Earth Sciences,East China University of Technology,Nanchang 330013,China

通讯作者: 张威,教授,主要从事环境与灾害地貌研究. E-mail: zhangweilnu@163.com

收稿日期: 2022-02-28   修回日期: 2022-08-08  

基金资助: 国家自然科学基金项目.  42071013

Received: 2022-02-28   Revised: 2022-08-08  

作者简介 About authors

李亚鹏,博士研究生,主要从事气候地貌与沉积研究.E-mail:lyplnnu@163.com , E-mail:lyplnnu@163.com

摘要

平衡线高度(equilibrium line altitude,ELA)是冰川响应气候变化的直接反映,分析其变化特征对于了解现在和过去的气候具有重要意义。念青唐古拉山中段作为西南季风通道以及怒江与雅鲁藏布江的分水岭,ELA变化及特征研究可为不同流域冰川变化与气候相互关系提供参考。基于遥感影像及气候数据,结合模型计算的冰川ELA数据作为输入参数,建立多元线性回归方程,重建并分析了1984—2019年间念青唐古拉山中段冰川ELA变化。结果表明:研究时段内平均ELA为5 360 m a.s.l.,总体呈上升趋势,上升速率为1.57 m∙a-1。ELA年变化量显示出波动变化特征,波动范围为5 360~5 420 m a.s.l.,上升幅度为60 m。受印度季风、流域位置及冰川朝向等因素影响,各流域ELA变化具有差异性,霞曲流域、易贡藏布流域和麦曲流域多年平均ELA高程分别为5 335 m a.s.l.、4 987 m a.s.l.和5 317 m a.s.l.,平均上升幅度分别为265 m、314 m和335 m,上升速率分别7.57 m∙a-1、8.97 m∙a-1和9.57 m∙a-1。对冰川区多年ELA变化的气候响应分析显示,ELA变化主要受气温控制,随气温变化1 ℃,冰川ELA总体波动幅度为126.02 m。

关键词: ELA重建 ; 年际波动 ; 气候变化 ; 念青唐古拉山

Abstract

Equilibrium line altitude (ELA) is a direct reflection of glacier response to climate change. Analyzing its variation characteristics is of great significance to understand the current and past climate. However, because there are only a few glaciers in the Qinghai-Tibet Plateau and its surrounding areas with long-time scale continuous observation data, the height of the equilibrium line of most other monitored glaciers is only the observation data in recent years, and the time series is relatively short. At the same time, the distribution of plateau meteorological stations is mainly concentrated in the eastern edge, and there is no station detection data in some glacier distribution areas, which largely limits the comparative analysis and research on the height variation of glacier equilibrium line and its climate sensitivity in different regions. The middle part of Nyainqêntanglha Mountains as the southwest monsoon channel and the watershed of the Nu River and the Yarlung Zangbo (Brahmaputra) River, the study of ELA variations and characteristics can provide a reference for the interrelationship between glacier changes and climate in different basins. In this study, the natural domain method is used to select the glacier distribution area in the middle of Nyainqêntanglha Mountains as the research point. Through the extraction and analysis of remote sensing images, glacier cataloging data and meteorological data, and using air temperature, solid precipitation data and ELA as input parameters, we try to establish multiple linear regression equations, reconstruct the glacier ELA in the study area from 1984 to 2019, and discuss and analyze the variation trend of ELA on its interannual scale regional heterogeneity and climate response. The results show that the multi-year average ELA in the study area is 5 360 m a.s.l., showing an overall upward trend. The research on the annual variation of ELA shows the characteristics of fluctuation. The fluctuation range of ELA is 5 360~5 420 m a.s.l., the fluctuation range is about 60 m, and the average rising rate is 1.57 m·a-1. Analysis of ELA variations in different watersheds shows that from 1984 to 2019, the ELA ranges of Xiaqu, Yigong Zangbo and Maiqu are 5 178~5 492 m a.s.l., 4 855~5 120 m a.s.l. and 5 150~5 485 m a.s.l., respectively. Under the background of climate warming, the variations of ELA are generally increasing, but the variations of ELA in different basins are different. Among them, the ELA variation in the Maiqu basin is the largest, with an average increase of 335 m, the Xiaqu basin and the Yigong Zangbo basin increased by 265 m and 314 m, respectively, with a rising rate of 9.57 m·a-1, 7.57 m·a-1, and 8.97 m·a-1, respectively. At the same time, statistical analysis shows that the annual average ELA elevations of the Xiaqu, Yigong Zangbo and Maiqu watersheds are 5 335 m a.s.l., 4 987 m a.s.l. and 5 317 m a.s.l., respectively, showing a decrease in the northwest-southeast direction, and a higher elevation on the north slope. Based on the statistics of average air temperature, solid precipitation and glacier ELA in the middle of Nyainqêntanglha Mountains from 1984 to 2019, the analysis of the response of glacier ELA variation to climate shows that the glacier ELA in the study area is mainly controlled by air temperature variation. With the air temperature variation of 1 ℃, the fluctuation range of ELA is 126.02 m. Moreover, with the continuous increase of air temperature, the glacier ELA in the middle of Nyainqêntanglha Mountains rises and the glacier will continue to retreat.

Keywords: ELA reconstruction ; interannual fluctuation ; climate change ; Nyainqêntanglha Mountains

PDF (5055KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李亚鹏, 张威, 柴乐, 唐倩玉, 葛润泽, 孙波. 1984—2019年念青唐古拉山中段冰川ELA变化估算及特征分析[J]. 冰川冻土, 2022, 44(4): 1165-1174 doi:10.7522/j.issn.1000-0240.2022.0108

LI Yapeng, ZHANG Wei, CHAI Le, TANG Qianyu, GE Runze, SUN Bo. Estimation and characteristic analysis of ELA variations in middle section of the Nyainqêntanglha Mountains from 1984 to 2019[J]. Journal of Glaciology and Geocryology, 2022, 44(4): 1165-1174 doi:10.7522/j.issn.1000-0240.2022.0108

0 引言

政府间气候变化专门委员会(IPCC)第六次评估报告对观测到的气候系统变化显示,人类活动估计造成了全球升温高于工业化前水平约1.0 ℃,可能区间为0.8~1.2 ℃。如果继续以目前的速率升温,全球升温可能会在2030年至2052年达到1.5 ℃(高信度)。同时,报告显示了过去二十年以来,几乎全球范围内的冰川都呈现退缩状态(高信度)1-2。冰川过度融化将会在区域和全球范围内造成严重影响3-5

ELA是气候对冰川系统影响的关键参数,与当地气候条件密切相关。特别是固态降水和气温,即当气温升高,固态降水量减少时,ELA呈上升趋势,反之下降6。在全球变暖的背景下,ELA变化的研究应该引起重视7-8。ELA的计算主要是通过现代冰川卫星监测或数学模型模拟或者利用经验和统计方法等进行估算9-13,随着人们对ELA对气候响应的逐步充分认识,更多的方法也被应用在ELA研究中,如利用ELA变化量与冰川物质和能量平衡的关系式进行计算等14-16。尽管如此,由于青藏高原及其周边地区长时间尺度连续观测数据仅有几条冰川(主要有天山乌鲁木齐河源1号冰川和唐古拉山的小冬克玛底冰川),其余大多数监测冰川的平衡线高度只有近几年的观测资料,时间序列相对较短。同时,高原气象站点的分布主要集中于东缘,且部分冰川分布区没有站点检测数据,这在很大程度上限制了不同区域冰川平衡线高度变化状况及其气候敏感性的对比分析与研究17-18

念青唐古拉山作为西南季风暖湿气流进入高原的通道和藏东南海洋型冰川区向唐古拉山大陆型冰川区的过渡区域,是青藏高原东南缘重要的山谷冰川分布区19-20。对于念青唐古拉山区域内各冰川相关研究表明不同流域冰川变化及其特征差异显著21-30。因此,在前人研究基础之上,本研究利用自然分域法,选取念青唐古拉山中段冰川分布区作为研究点,通过遥感影像、冰川编目数据以及气象数据提取与分析,利用气温与固态降水数据和ELA作为输入参数,尝试建立多元线性回归方程,重建研究区1984—2019年间冰川ELA,讨论并分析其年际尺度下的ELA变化趋势、区域异同性以及气候响应。

1 研究区概况

念青唐古拉山中段冰川作用区位于怒江流域以南,雅鲁藏布江大拐弯西北部的麦曲流域、霞曲流域及易贡湖以西的易贡藏布流域(图1)。地势南高北低,海拔5 500 m以上,相对高差大于1 000 m,平均海拔3 600 m。气候属高原温带半湿润气候类型。年极端最低气温为-40 ℃,年平均气温为-1 ℃,年均降水量为400~700 mm31-32。冰川编目资料显示33,区域内共有500条现代冰川,面积为2 716.608 km2,以中小型冰川(面积<5 km2)为主,约占区域整体冰川的78%,规模相对较大(面积≥10 km2)的冰川有47条,平均海拔范围为3 000~6 000 m,主峰孔嘎峰海拔6 490 m。

图1

图1   研究区位置(a)与冰川分布(b)

注:底图利用30-m ASTER(https://www.gscloud.cn)绘制,测绘区域以念青唐古拉山脉为界19,现代冰川数据来自RGI 6.034,流域数据来自BasinATLAS_v10_lev07 (https://hydrosheds.org/downloads)

Fig. 1   Location of the study area (a) and distribution of glaciers (b) [The base map is drawn with 30-m ASTER (https://www.gscloud.cn), the surveying and mapping area is bounded by Nyainqêntanglha Mountains19, the modern glacier data is from RGI 6.034, and basin data is from BasinATLAS_v10_lev07 (https://hydrosheds.org/downloads)]


2 数据与方法

2.1 数据来源

气象数据来源于美国国家气候数据中心(ftp://ftp.ncdc.noaa.gov/pub/data/noaa/isd-lite/)和中国气象数据网(http://data.cma.cn)。由于研究区没有气象站点,通过选取周边邻近地区8个气象站点,分别为丁青、类乌齐、昌都、洛隆、波密、八宿、察隅和林芝,利用标准克里金插值获取研究区数据,时间范围为1984—2019年。现代冰川数据来源于国家冰川冻土沙漠科学数据中心(www.ncdc.ac.cn)第二次冰川编目资料与Randolph Glacier Inventory(http://www.glims.org/RGI/)数据相互补充。

2.2 气温与固态降水量提取

临界气温法区分固液态降水是冰川物质平衡模型中最常用的方法。主要包括双临界气温分离法与单临界气温分离法。双临界气温分离法只适用于我国的一些干旱地区,单临界气温法具有普遍适用性且具有较高精度35-37。本研究中采用单临界气温法38

Ps=PT<TsT1-TT-TsPTsTT10T>Ts

式中:Ps为月固态降水量(mm);P为月降水量(mm);T为月平均气温(℃);Tl为液态降水临界气温值(℃);Ts为固态降水临界气温值(℃)。为获取研究区固态降水数据,首先参考康尔泗等38与张太刚等39临界气温方法划分固液态降水的方案,分别取0 ℃和2 ℃作为固液降水的划分阈值。研究区气象资料显示,冰川作用现代冰川区固态降水临界气温为-4.2~-0.6 ℃(图2,折线),平均固态降水量为140~614 mm(图2,条带)。

图2

图2   1984—2019年临界气温与固态降水量变化

Fig. 2   Variations of critical air temperature and solid precipitation from 1984 to 2019


2.3 ELA计算

积累区面积比率法(accumulation area ratio, AAR)与面积-高程平衡率法(area-altitude balance ratio, AABR)是目前最广泛使用的冰川ELA计算方法40-41。基于AAR与AABR法基本原理,本研究使用Pellitero等41开发的自动计算ELA工具(https://github.com/cageo/Pellitero-2015)。该工具计算ELA过程主要包括两个部分:输入需要重建冰川表面的数字高程模型(digital elevation model, DEM)和定义AABR与AAR值,即可快速计算出单条冰川或多条冰川数据集。

具体操作步骤如下:①输入需要重建冰川表面的DEM。设置用于冰川面积计算的等高线区间,本研究设置为50 m。②定义AABR与AAR值。为获取适合本研究区的AABR与AAR值,需要对其进行确定。AAR值的确定利用Kern等42系统总结分析了全球不同地区的46条山谷和冰斗冰川的面积S与其稳定状态下的AAR值之间的关系式,为AAR=0.0648lnS+0.483。由此,计算得出本研究区域AAR值为0.74±0.02。AABR值的确定是基于Rea43系统评估了全球冰川的物质平衡提出的适用于全球范围内的BR平均值为1.75±0.71。鉴于同一地区有多个冰川,Benn等44建议对一个BR范围进行计算,然后选择ELA标准差最低的一个。利用该方法,计算得出本研究区的BR均值为1.78±0.68。③使用Osmaston45提出的最低标准差方法来确定冰川最佳ELA。返回结果为“ELA_values_AAR_and_AABR.txt”。

3 结果与讨论

3.1 ELA重建模型与验证

Singh等46利用多元线性回归统计分析法对1979—2013年喜马拉雅山脉的纳拉杜冰川平衡线高度的统计估算及其趋势分析,Zekollari等47使用该方法描述了瑞士的Morteratsch冰川的表面质量平衡,Sakai等48利用多元线性回归统计分析了亚洲高山冰川对近期气候变化的响应。基于前人研究,利用编目资料数据与研究区已有相关遥感影像解译数据49。利用ELA calculation toolbox计算工具,对研究区内1990年、1999年、2011年及2019年的ELA进行计算(表1)。以气象站点数据(气温与固态降水量)和ELA数据作为输入参数,建立1984—2019年间念青唐古拉山中段现代冰川ELA变化多元线性回归方程。

ELA=-0.207X1+9.191X2+5 385

式中:X1为月平均固态降水量(mm);X2为月平均气温(℃)。

表1   念青唐古拉山中段ELA计算结果

Table 1  Calculation results of ELA in middle section of the Nyainqêntanglha Mountains

年份ELA/(m a.s.l.)
AARAABR均值
19905 1705 1955 182.5
19995 3755 3755 375.0
20115 3905 3905 390.0
20195 4185 3685 393.0

新窗口打开| 下载CSV


利用有冰川纪录的年份对1984—2019年间研究区冰川ELA模拟结果进行验证,冰川编目资料32记录了1989—1990年、1999—2000年及2010—2011年研究区冰川变化特征,对应ELA分别为5 140.1 m、5 403.5 m和5 408.8 m,利用上述方程[式(2)]计算ELA结果分别为5 182.5 m、5 375.0 m和5 390.0 m,ELA模拟值与测量值具有高度一致性,确定系数为0.9977。

同时,为进一步对比验证模拟结果的有效性,通过对气象站1984—2019年的年平均气温、6—8月平均气温、年降水量和6—8月平均降水量进行分析,参考我国西部17条现代冰川的物质平衡以及气象观测资料50,建立冰川物质平衡线处年降水量(PELA)与6—8月平均气温(TSO)的拟合方程[式(3)],并结合综合因子法51式(4)],来计算念青唐古拉山中段现代冰川ELA。

TSO=-15.4+2.48lnPELA
f(T1+TZΔH, P1+PZΔH)=0

选取距离研究区域较近的丁青与洛隆气象站数据,站点海拔分别为3 873 m和3 640 m,6—8月平均气温T1=13.1 ℃,年降水量P1=534 mm,气温梯度T/Z=0.68 ℃·(100m)-1,降水梯度P/Z=29.6 mm·(100m)-1。带入式(3),计算得出海拔增加量ΔH=1 495 m,念青唐古拉山中段ELA为5 368 m,模拟结果为5 282 m,相对误差仅为0.16%,两者基本一致。

3.2 ELA年际变化及特征

通过重建念青唐古拉山中段1984—2019年间研究区冰川ELA。结果显示,研究区多年平均ELA为5 389 m a.s.l.,总体呈上升趋势(图3,直线),90%置信区间(虚线)的确定系数为0.7830。ELA年变化研究显示出波动变化特征(图3,折线),ELA波动范围为5 360~5 420 m a.s.l.,波动幅度约为60 m,平均上升速率为1.57 m·a-1。ELA年变化量正值与负值分别为18年和17年,基本呈现出交替状态(图3,条带)。其中,ELA年际变化量正值总和为319.9 m,负值变化总和为291.2 m。

图3

图3   1984—2019年念青唐古拉山中段ELA及其年变化量

Fig. 3   ELA and its annual variation in middle section of the Nyainqêntanglha Mountains from 1984 to 2019


3.3 不同流域的ELA变化

利用流域自然分区法,选取HydroSHEDS and WaterGAP v2.2数据库中的BasinATLAS_Catalog_v10数据,将研究区分为三个流域[图1(b)],分别为霞曲流域[图4(a)]、易贡藏布流域[图4(c)]和麦曲流域[图4(e)]。霞曲流域、易贡藏布流域和麦曲流域现有现代冰川分别为140、256和104条。冰川表面高程范围分别为3 925~6 713 m a.s.l.、2 689~6 639 m a.s.l.和4 185~6 443 m a.s.l.。1984—2019年霞曲流域、易贡藏布流域和麦曲流域ELA变化范围分别为5 178~5 492 m a.s.l.、4 855~5 120 m a.s.l.和5 150~5 485 m a.s.l.[图4(b), (d), (f)]。

图4

图4   三个流域冰川表面高程与ELA变化

注:(b)、(d)、(f)中黑色线段为ELA平均高程

Fig. 4   Variations of glacier surface elevation and ELA in three river basins (The black line segment in (b), (d), (f) is the average ELA elevation)


在气候变暖的背景下,ELA变化总体都呈上升状态,但不同流域ELA变化具有差异性。其中,麦曲流域ELA变化幅度最大,平均上升335 m,霞曲流域和易贡藏布流域分别上升265 m和314 m,上升速率分别9.57 m·a-1、7.57 mm·a-1和8.97 m·a-1。同时,统计分析显示霞曲流域,易贡藏布流域和麦曲流域年平均ELA高程分别为5 335 m a.s.l.、4 987 m a.s.l.和5 317 m a.s.l.,呈现出西北—东南方向降低,北坡高于南坡。

受印度季风,流域位置及冰川朝向等因素影响,各流域现代冰川区水热组合的差异化特征,进而影响着冰川ELA变化。从流域分布来看,霞曲流域冰川区位于研究区西北方向,冰川朝向以NW为主,易贡藏布流域位于研究区东南方向,冰川朝向以SE为主,麦曲流域位于研究区东北方向,冰川朝向以NE为主。季风路径(图5)显示出易贡藏布流域处于印度季风迎风坡,获得的水汽相较于处于背风坡雨影区的麦曲流域和霞曲流域更多。

图5

图5   标准克里金插值处理后的冰川区气温与降水

Fig. 5   Air temperature and precipitation in glacier area after standard Kriging interpolation


从各流域冰川区气温与降水状况看,冰川区整体气温介于-5.6~-3.9 ℃,平均值为-4.8 ℃[图5(a)];降水介于502~564 mm,平均值为547 mm[图5(b)]。易贡藏布流域冰川区气温为-5.5~-3.9 ℃,均值为-4.9 ℃;降水为502~554 mm,均值为547 mm;麦曲流域冰川区气温为-4.6~-4.1 ℃,均值为 -4.3 ℃;降水为510~555 mm,均值为539 mm;霞曲流域现代冰川区气温为-5.5~-4.4 ℃,均值为 -4.8 ℃;降水为549~557 mm,均值为553 mm。对比各流域冰川ELA和冰川区气温降水组合,发现相较于处于背风坡的麦曲流域,处于迎风坡的易贡藏布流域的水热组合状况更优,更利于冰川发育。

从冰川规模来看,易贡藏布流域冰川规模最大,最大冰川长度为33 km[图5(d)],总面积为1 238.809 km2,麦曲流域次之,霞曲流域最小,最大冰川长度分别为24 km[图5(b)]和19 km[图5(f)],总面积分别为760.817 km2和716.982 km2[33。相关研究表明,冰川对气候变化的反馈作用52以及冰川变化对气候的响应具有滞后效应53,使得尽管相较于易贡藏布流域冰川区,霞曲流域水热组合状况更优,但冰川规模相对较小,ELA变化对气候响应更敏感。这也是造成短时间尺度范围同一气候区域冰川ELA变化差异性的重要原因。

3.4 ELA变化对气候变化的响应

姚檀栋等54对高亚洲冰川总体退缩研究表明,气温升高引起的冰川消融量增加和粒雪线上升,是近百年来全球山地冰川呈现总的退缩趋势的主要原因。同时,Caidong等55研究发现,当温度变化为1 ℃时,ELA变化为140 m。段克勤等56对小冬克玛底冰川ELA的气候敏感性进行了试验,发现在气候状态基础上,假设其他气候因子不变,当气温增加1 ℃将引起冰川ELA大幅度上升160 m,而增加20%的降水量引起的ELA仅降低10 m,这也说明冰川ELA对气温变化较敏感。

本研究通过1984—2019年间平均气温、固态降水量与冰川ELA统计,对念青唐古拉山中段冰川ELA变化对气候的响应进行分析(图6)。总体来看,ELA随气温和固态降水量变化都呈显著相关性,确定系数R2分别为0.5873和0.9540。同时,ELA响应气温与固态降水量变化结果显示,研究区冰川ELA主要受气温变化控制,随气温变化1 ℃,ELA波动幅度为126.02 m,而受固态降水量变化影响,ELA波动仅为0.2492 m。并且,随着气温的持续升高,念青唐古拉山中段冰川ELA上升,冰川将继续处于退缩状态。

图6

图6   ELA随气温与固态降水量的变化

Fig. 6   Variation of ELA with air temperature and solid precipitation


4 结论

通过建立念青唐古拉山中段冰川作用区多元线性回归方程,对1984—2019年间ELA变化进行了重建。主要结论如下:

(1)研究时段内平均ELA为5 360 m a.s.l.。

(2)ELA总体呈上升趋势,上升速率为1.57 m·a-1。ELA年变化显示出波动变化特征,波动范围为5 360~5 420 m a.s.l.,上升幅度为60 m。

(3)受流域位置、冰川朝向及冰川规模影响,研究区ELA高程呈差异性,霞曲流域、易贡藏布流域和麦曲流域多年平均ELA高程分别为5 335 m a.s.l.、4 987 m a.s.l.和5 317 m a.s.l.,平均上升幅度分别为265 m、314 m和335 m,上升速率分别7.57 m·a-1、8.97 m·a-1和9.57 m·a-1。各流域平均ELA高程对比显示出西北—东南方向降低,北坡高于南坡的变化特征。

(4)冰川区多年ELA变化的气候响应分析显示,ELA变化主要受气温控制,随气温变化1 ℃,冰川ELA总体波动126.02 m。

参考文献

IPCC.

Summary for policymakers

[M]// Global warming of 1.5 ℃: IPCC special report on the impacts of global warming of 1.5 ℃ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. New YorkCambridge University Press, 2018.

[本文引用: 1]

Tollefson J.

IPCC climate report: Earth is warmer than it’s been in 125,000 years

[J]. Nature, 20215967871): 171-172.

[本文引用: 1]

Huss MHock R.

A new model for global glacier change and sea-level rise

[J]. Frontiers in Earth Sciences, 2015354.

[本文引用: 1]

Milner A MKhamis KBattin T Jet al.

Glacier shrinkage driving global changes in downstream systems

[J]. Proceedings of the National Academy of Sciences of the United States of America, 201711437): 9770-9778.

Wang XiaomingLiu ShiweiZhang Jinglin.

A new look at roles of the cryosphere in sustainable development

[J]. Advances in Climate Change Research, 2019102): 124-131.

[本文引用: 1]

Porter S C.

Equilibrium-line altitudes of late Quaternary glaciers in the Southern Alps, New Zealand

[J]. Quaternary Research, 197551): 27-47.

[本文引用: 1]

Yao TandongThompson LYang Weiet al.

Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings

[J]. Nature Climate Change, 20122663-667.

[本文引用: 1]

Shi PeihongDuan KeqinLiu Huancaiet al.

Response of Xiao Dongkemadi Glacier in the central Tibetan Plateau to the current climate change and future scenarios by 2050

[J]. Journal of Mountain Science, 2016131): 13-28.

[本文引用: 1]

Ohmura AKasser PFunk M.

Climate at the equilibrium line of glaciers

[J]. Journal of Glaciology, 199238397-411.

[本文引用: 1]

Shi YafengCui ZhijiuLi Jijunet al. Problems of Quaternary glaciation and environments in eastern China[M]. BeijingScience Press1989.

施雅风崔之久李吉均. 中国东部第四纪冰川与环境问题[M]. 北京科学出版社1989.

Ivy-Ochs SKerschner HKubik P Wet al.

Glacier response in the European Alps to Heinrich Event 1 cooling: the Gschnitz stadial

[J]. Journal of Quaternary Science, 2006212): 115-130.

Shi Yafeng. Glaciers and their environments in China: the present, past and future[M]. BeijingScience Press2000.

施雅风. 中国冰川与环境: 现在、过去和未来[M]. 北京科学出版社2000.

Su ZhenZhao JingdongZheng Benxing.

Distribution and features of the glaciers’ ELAs and the decrease of ELAs during the Last Glaciation in China

[J]. Journal of Glaciology and Geocryology, 2014361): 9-19.

[本文引用: 1]

苏珍赵井东郑本兴.

中国现代冰川平衡线分布特征与末次冰期平衡线下降值研究

[J]. 冰川冻土, 2014361): 9-19.

[本文引用: 1]

Stansell N DPolissar P JAbbott M B.

Last glacial maximum equilibrium-line altitude and paleo-temperature reconstructions for the Cordillera de Mérida, Venezuelan Andes

[J]. Quaternary Research, 2007671): 115-127.

[本文引用: 1]

Kerschner HIvy-Ochs S.

Palaeoclimate from glaciers: examples from the Eastern Alps during the Alpine Lateglacial and early Holocene

[J]. Global and Planetary Change, 20076058-71.

Pu JianchenYao TandongYang Meixueet al.

Rapid decrease of mass balance observed in the Xiao (Lesser) Dongkemadi Glacier, in the central Tibetan Plateau

[J]. Hydrological Processes, 20082216): 2953-2958.

[本文引用: 1]

Wang NinglianHe JianqiaoPu Jianchenet al.

Variations in equilibrium line altitude of the Qiyi Glacier, Qilian Mountains, over the past 50 years

[J]. Chinese Science Bulletin, 20105533): 3810-3817.

[本文引用: 1]

王宁练贺建桥蒲健辰.

近50年来祁连山七一冰川平衡线高度变化研究

[J]. 科学通报, 20105532): 3107-3115.

[本文引用: 1]

Shi Yafeng. Concise glacier inventory of China[M]. ShanghaiShanghai Popular Science Press2005.

[本文引用: 1]

施雅风. 简明中国冰川目录[M]. 上海上海科学普及出版社2005.

[本文引用: 1]

An GuoyingHan LeiHuang Shuchunet al.

Dynamic variation of glaciers in Nyainqêntanglha Mountain during 1999—2015: evidence from remote sensing

[J]. Geoscience, 2019331): 176-186.

[本文引用: 3]

安国英韩磊黄树春.

念青唐古拉山现代冰川1999—2015年期间动态变化遥感研究

[J]. 现代地质, 2019331): 176-186.

[本文引用: 3]

Liu ChaohaiShi YafengWang Zongtaiet al.

Glacier resources and their distributive characteristics in China: a review on Chinese glacier inventory

[J]. Journal of Glaciology and Geocryology, 2000222): 106-112.

[本文引用: 1]

刘潮海施雅风王宗太.

中国冰川资源及其分布特征: 中国冰川目录编制完成

[J]. 冰川冻土, 2000222): 106-112.

[本文引用: 1]

Wang XuZhou AiguoSun Ziyonget al.

Distribution and changes characteristics of glacial lakes in western Nyainqêntanglha Range during 1972—2009

[J]. Geological Science and Technology Information, 2012314): 91-97.

[本文引用: 1]

王旭周爱国孙自永.

1972—2009年念青唐古拉山西段冰湖分布及其变化特征

[J]. 地质科技情报, 2012314): 91-97.

[本文引用: 1]

Wang XuZhou AiguoFlorian Set al.

Glacier temporal-spatial change characteristics in western Nyainqêntanglha Range, Tibetan Plateau 1977—2010

[J]. Earth Science: Journal of China University of Geosciences, 2012375): 1082-1092.

王旭周爱国Florian S.

念青唐古拉山西段冰川1977—2010年时空变化

[J]. 地球科学: 中国地质大学学报, 2012375): 1082-1092.

Ji QinYang TaibaoLi Xia.

Relationship between glacier retreat and climate change in eastern Nyainqêntanglha in the past 40 years

[J]. Journal of Arid Land Resources and Environment, 2015292): 166-171.

冀琴杨太保李霞.

近40年来念青唐古拉山东段则普乡地区冰川与气候变化研究

[J]. 干旱区资源与环境, 2015292): 166-171.

Ji QinYang TaibaoTian Hongzhenet al.

Relation between glacier retreat and climate change in western Nyainqêntanglha in the past 40 years

[J]. Journal of Arid Land Resources and Environment, 2014287): 12-17.

冀琴杨太保田洪阵.

念青唐古拉山西段近40年冰川与气候变化研究

[J]. 干旱区资源与环境, 2014287): 12-17.

Ji QinYang TaibaoLi Xia.

Study on relationship between glacier retreat and climate change in the eastern Nyainqêntanglha in the past 40 years

[J]. Research of Soil and Water Conservation, 2014212): 306-310.

冀琴杨太保李霞.

念青唐古拉山东段八盖乡地区近40年冰川与气候变化研究

[J]. 水土保持研究, 2014212): 306-310.

Zhu MeilinYao TandongYang Weiet al.

Ice volume and characteristics of sub-glacial topography of the Zhadang Glacier, Nyainqêntanglha Range

[J]. Journal of Glaciology and Geocryology, 2014362): 268-277.

朱美林姚檀栋杨威.

念青唐古拉山扎当冰川冰储量估算及冰下地形特征分析

[J]. 冰川冻土, 2014362): 268-277.

Gou PengYe QinghuaWei Qiufang.

Lake ice change at the Nam Co Lake on the Tibetan Plateau during 2000—2013 and influencing factors

[J]. Progress in Geography, 20153410): 1241-1249.

勾鹏叶庆华魏秋方.

2000—2013年西藏纳木错湖冰变化及其影响因素

[J]. 地理科学进展, 20153410): 1241-1249.

Di Baogang.

Glacier change in the Nyainqêntanglha Mountain in 36 years and its response to climate change

[D]. BeijingChina University of Geosciences (Beijing)2019.

邸宝刚.

念青唐古拉山脉36年来冰川变化及其对气候变化的响应

[D]. 北京中国地质大学(北京)2019.

Wu KunpengLiu ShiyinJiang Zongliet al.

Glacier mass balance over the central Nyainqêntanglha Range during recent decades derived from remote-sensing data

[J]. Journal of Glaciology, 201965251): 422-439.

Ren ShaotingMenenti MJia Liet al.

Glacier mass balance in the Nyainqentanglha Mountains between 2000 and 2017 retrieved from ZiYuan-3 stereo images and the SRTM DEM

[J]. Remote Sensing, 2020125): 864.

[本文引用: 1]

Xizang Institute of Geological Survey.

1:250 000 Biru, Dengqen, Lhari and Banbar Sheets in Xizang

[J]. Sedimentary Geology and Tethyan Geology, 2005251/2): 96-99.

[本文引用: 1]

西藏地质调查院.

1∶25万比如县幅、丁青县幅、嘉黎县幅、边坝县幅地质调查成果与进展

[J]. 沉积与特提斯地质, 2005251/2): 96-99.

[本文引用: 1]

Wu Kunpeng.

Study on glacier change in Nyainqêntanglha Mountain based on remote sensing

[D]. BeijingUniversity of Chinese Academy of Sciences2017.

[本文引用: 2]

吴坤鹏.

基于遥感的念青唐古拉山冰川变化研究

[D]. 北京中国科学院大学2017.

[本文引用: 2]

Liu ShiyinGuo WanqinXu Juli.

The second glacial catalogue data set of China (v

1.0)[DB]. Lanzhou: National Cryosphere Desert Data Center, 2019.

[本文引用: 2]

刘时银郭万钦许君利.

中国第二次冰川编目数据集(v

1.0)[DB]. 兰州: 国家冰川冻土沙漠科学数据中心, 2019.

[本文引用: 2]

Consortium RGI.

Randolph glacier inventory: a dataset of global glacier outlines: version 6.0

[DB]. Boulder, CO, USA: National Snow and Ice Data Center, 2017.

[本文引用: 2]

Maurer E PMass C.

Using radar data to partition precipitation into rain and snow in a hydrologic model

[J]. Journal of Hydrologic Engineering, 2006113): 214-221.

[本文引用: 1]

Han ChuntanChen RenshengLiu Junfenget al.

A discuss of the separating solid and liquid precipitations

[J]. Journal of Glaciology and Geocryology, 2010322): 249-256.

韩春坛陈仁升刘俊峰.

固液态降水分离方法探讨

[J]. 冰川冻土, 2010322): 249-256.

Liu YulianRen GuoyuSun Xiubao.

Establishment and verification of single threshold temperature model for partition precipitation phase separation

[J]. Journal of Applied Meteorological Science, 2018294): 449-459.

[本文引用: 1]

刘玉莲任国玉孙秀宝.

降水相态分离单临界气温模型建立和检验

[J]. 应用气象学报, 2018294): 449-459.

[本文引用: 1]

Kang ErsiCheng GuodongLan Yongchaoet al.

A model for simulating the response of runoff from the mountainous watersheds of inland river basins in the arid area of Northwest China to climatic changes

[J]. Science in China: Series D, 199942(): 52-63.

[本文引用: 2]

康尔泗程国栋蓝永超.

西北干旱区内陆河流域出山径流变化趋势对气候变化响应模型

[J]. 中国科学: D辑, 199929(): 47-54.

[本文引用: 2]

Zhang TaigangGao TanguangDiao Wenqinet al.

Snow/ice albedo variation and its impact on glacier mass balance in the Qilian Mountains

[J]. Journal of Glaciology and Geocryology, 2021431): 145-157.

[本文引用: 1]

张太刚高坛光刁文钦.

祁连山区雪冰反照率变化及其对冰川物质平衡的影响

[J]. 冰川冻土, 2021431): 145-157.

[本文引用: 1]

Furbish D JAndrews J.

The use of hypsometry to indicate long-term stability and response of valley glaciers to changes in mass transfer

[J]. Journal of Glaciology, 198430199-211.

[本文引用: 1]

Pellitero RRea B RSpagnolo Met al.

A GIS tool for automatic calculation of glacier equilibrium-line altitudes

[J]. Computers & Geosciences, 20158255-62.

[本文引用: 2]

Kern ZLászló P.

Size specific steady-state accumulation-area ratio: an improvement for equilibrium-line estimation of small palaeoglaciers

[J]. Quaternary Science Reviews, 20102919/20): 2781-2787.

[本文引用: 1]

Rea B R.

Defining modern day area-altitude balance ratios (AABRs) and their use in glacier-climate reconstructions

[J]. Quaternary Science Reviews, 2009283/4): 237-248.

[本文引用: 1]

Benn D IOwen L AOsmaston H Aet al.

Reconstruction of equilibrium-line altitudes for tropical and sub-tropical glaciers

[J]. Quaternary International, 20051388-21.

[本文引用: 1]

Osmaston H.

Estimates of glacier equilibrium line altitudes by the Area×Altitude, the Area×Altitude Balance Ratio and the Area×Altitude Balance Index methods and their validation

[J]. Quaternary International, 200513822-31.

[本文引用: 1]

Singh SKumar R.

A statistical approach to estimate equilibrium line altitude (ELA) and its trend analysis on Naradu Glacier, Himachal Himalaya

[J]. Materials Today: Proceedings, 202134869-874.

[本文引用: 1]

Zekollari HHuybrechts P.

Statistical modelling of the surface mass-balance variability of the Morteratsch Glacier, Switzerland: strong control of early melting season meteorological conditions

[J]. Journal of Glaciology, 201864244): 275-288.

[本文引用: 1]

Sakai AFujita K.

Contrasting glacier responses to recent climate change in High-Mountain Asia

[J]. Scientific Reports, 2017713717.

[本文引用: 1]

Zhang WeiLi YapengChai Leet al.

Glacier change and response to climate in the northern slope of the middle Nyainqêntanglha Mountains during 1990—2020

[J]. Progress in Geography, 20214012): 2073-2085.

[本文引用: 1]

张威李亚鹏柴乐.

1990—2020年间念青唐古拉山中段北坡边坝地区冰川变化及气候响应

[J]. 地理科学进展, 20214012): 2073-2085.

[本文引用: 1]

Shi YafengLiu ShiyinShangguan Donghuiet al.

Two peculiar phenomena of climatic and glacial variations in the Tibetan Plateau

[J]. Advances in Climate Change Research, 200624): 154-160.

[本文引用: 1]

施雅风刘时银上官冬辉.

近30 a青藏高原气候与冰川变化中的两种特殊现象

[J]. 气候变化研究进展, 200624): 154-160.

[本文引用: 1]

Zhang WeiLiu BeibeiCui Zhijiuet al.

Theoretical glacial equilibrium line altitudes and their influencing factors in the typical mountains of China

[J]. Acta Geographica Sinica, 2014697): 958-968.

[本文引用: 1]

张威刘蓓蓓崔之久.

中国典型山地冰川平衡线的影响因素分析

[J]. 地理学报, 2014697): 958-968.

[本文引用: 1]

Li ZhongqinDong Zhiwen.

Interaction between glacier and climate change: taking No.1 Glacier at the source of Urumqi River in Tianshan Mountains as an example

[J]. China Science and Technology Achievements, 200723): 8-9.

[本文引用: 1]

李忠勤董志文.

冰川与气候变化相互作用: 以天山乌鲁木齐河源1号冰川为例

[J]. 中国科技成果, 200723): 8-9.

[本文引用: 1]

Wang NinglianZhang Xiangsong.

Mountain glacier fluctuations and climatic change during the last 100 years

[J]. Journal of Glaciology and Geocryology, 1992143): 241-250.

[本文引用: 1]

王宁练张祥松.

近百年来山地冰川波动与气候变化

[J]. 冰川冻土, 1992143): 241-250.

[本文引用: 1]

Yao TandongWang YouqingLiu Shiyinget al.

Recent glacial retreat in High Asia in China and its impact on water resource in Northwest China

[J]. Science in China: Series D Earth Sciences, 20044712): 1065-1075.

[本文引用: 1]

姚檀栋刘时银蒲健辰.

高亚洲冰川的近期退缩及其对西北水资源的影响

[J]. 中国科学: D辑 地球科学, 2004366): 535-543.

[本文引用: 1]

Caidong CSorteberg A.

Modelled mass balance of Xibu Glacier, Tibetan Plateau: sensitivity to climate change

[J]. Journal of Glaciology, 201056196): 235-248.

[本文引用: 1]

Duan KeqinYao TandongShi Peihonget al.

Simulation and prediction of equilibrium line altitude of glaciers in the eastern Tibetan Plateau

[J]. Scientia Sinica: Terrae, 2017471): 104-113.

[本文引用: 1]

段克勤姚檀栋石培宏.

青藏高原东部冰川平衡线高度的模拟及预测

[J]. 中国科学: 地球科学, 2017471): 104-113.

[本文引用: 1]

/