X img

官方微信

img

群号:冰川冻土交流群

QQ群:218834310

  • 中国百强报刊
  • 中国精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库源刊
  • CN 62-1072/P 
  • ISSN 1000-0240 
  • 创刊于1979年
  • 主管单位:中国科学院
  • 主办单位:中国科学院寒区旱区
  •                  环境与工程研究所
  •                  中国地理学会
高级检索
作者投稿 专家审稿 编辑办公 编委办公 主编办公

冰川冻土, 2021, 43(2): 555-567 doi: 10.7522/j.issn.1000-0240.2021.0043

寒区工程与灾害

气候变化影响下高山区泥石流形成机制研究及展望

鲁建莹,1,2, 余国安,1, 黄河清1

1.中国科学院 地理科学与资源研究所 陆地水循环与地表过程重点实验室,北京 100101

2.中国科学院大学,北京 100049

Research and prospect on formation mechanism of debris flows in high mountains under the influence of climate change

LU Jianying,1,2, YU Guo’an,1, HUANG Heqing1

1.Key Laboratory of Water Cycle and Related Land Surface Processes,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,China

2.University of Chinese Academy of Sciences,Beijing 100049,China

通讯作者: 余国安, 副研究员, 主要从事泥沙运动、河流地貌及灾害研究. E-mail: yuga@igsnrr.ac.cn

编委: 武俊杰

收稿日期: 2020-09-14   修回日期: 2020-12-07  

基金资助: 国家重点研发计划项目.  2018YFC1505201
国家自然科学基金项目.  41971010

Received: 2020-09-14   Revised: 2020-12-07  

作者简介 About authors

鲁建莹,硕士研究生,主要从事河流地貌及地质灾害研究.E-mail:lujy.18s@igsnrr.ac.cn , E-mail:lujy.18s@igsnrr.ac.cn

摘要

全球范围内高海拔或高纬度山区(以下简称高山区),尤其高山冰川冻土急剧消退地区,广泛发育泥石流灾害。在全球气候变暖的大背景下,高山区泥石流的现实危害和潜在风险日渐凸显。与其他环境条件下泥石流过程主要由降雨激发不同,高山区泥石流的暴发多受降雨和温度条件的共同影响,其形成机制更为复杂,预测预警十分困难,因此加强高山区泥石流研究具有重要的科学价值和实践意义。通过述评近期高山区泥石流起动研究的主要进展,包括泥石流暴发与气象条件的关系,典型高山区泥石流事件成因,冰川冻土体消融破坏机制,以及冰碛土泥石流起动特征,认为未来高山区泥石流研究应加强高时空分辨率气象数据获取和物源动态变化分析研判,并从动力学机制层面进一步明晰高山区泥石流起动条件和发育过程。

关键词: 高山区泥石流 ; 暴发成因 ; 失稳机制 ; 起动特征 ; 水热条件

Abstract

Debris flow disasters are widely distributed in high-elevation or high-latitude mountain areas (referred to as debris flow in high mountains, DFHM), especially in areas where mountain glaciers and permafrost have receded rapidly. In the context of global climate change (temperature rising and higher possibility of occurrence of strong precipitation events), the actual hazards and potential risks of DFHM have drawn increasing attention. Unlike debris flows developing in low elevation environments which are mainly triggered by precipitation, the outbreak of DFHM is also significantly affected by temperature conditions, making its formation mechanism more complicated. Although a lot of research has been carried out on DFHM at home and abroad, effective prediction and early warning and prevention and control are still very difficult. It is of great scientific value and practical significance to further strengthen the starting conditions and mechanisms of glacial debris flow. This review summarizes the recent progress on initiation study of glacial debris flow, including: the relationship between glacial debris flow outbreak and meteorological conditions, causes of typical DFHM outbreaks, failure mechanisms and models of glacier (rock, or moraine deposits), and characteristics of moraine initiation. In the future, we should strengthen the acquisition of high spatial-temporal resolution meteorological data and the analysis and judgment of dynamic changes of material sources, and further clarify the formation conditions and development process of debris flow in alpine areas from the perspective of dynamic mechanism.

Keywords: debris flows in high mountains ; outbreak causes ; mechanism of stability failure ; initiation characteristics ; hydrothermal conditions

PDF (1225KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

鲁建莹, 余国安, 黄河清. 气候变化影响下高山区泥石流形成机制研究及展望[J]. 冰川冻土, 2021, 43(2): 555-567 doi:10.7522/j.issn.1000-0240.2021.0043

LU Jianying, YU Guo’an, HUANG Heqing. Research and prospect on formation mechanism of debris flows in high mountains under the influence of climate change[J]. Journal of Glaciology and Geocryology, 2021, 43(2): 555-567 doi:10.7522/j.issn.1000-0240.2021.0043

0 引言

高海拔或高纬度山区(以下简称高山区)尤其高山冰川或冻土的边缘地带是泥石流灾害的易发区。由于高山环境多发育冰川(冻土)或分布积雪,相关文献常将这一环境形成的泥石流称之为“冰川泥石流”、“冰川融雪泥石流”或“冰雪-降雨耦合泥石流”1-4。从起动过程看,高山区泥石流一般由冰碛物、冰雪堆积物等物质在降雨、冰雪融水、冰崩、雪崩、冰碛湖溃决等条件下激发形成1-35。尽管高山区泥石流的形成起动区多为人迹罕至的高山冰雪/冻土坡面(或上游沟谷),但由于其流速高,演进距离长,且规模在演进过程中常会显著增大,因此,这类泥石流过程多破坏力巨大,易造成下游基础设施及居民生命财产的重大损失46-7

高山区冰川、冻土等对气候变化十分敏感,在全球气候变化(尤其升温)的大背景下,近几十年来我国青藏高原(尤其藏东南地区)、川西及新疆天山地区、欧洲阿尔卑斯山区、北欧斯堪的纳维亚山脉、冰岛、南美安第斯山区、北美落基山脉以及新西兰等国内外冰川冻土整体上处于快速消融退缩状态8-14。这些高山冰川、冻土急剧消退地区孕育了适宜泥石流发育的地形和物源条件15,是高山区泥石流的多发区。总体上看,气候变化引起的升温和降雨变化(如强降雨事件增多)使潜在孕灾环境更易于成灾16,如我国318国道川藏线和拟建川藏铁路重要通行区的藏东南地区、新疆天山地区独库公路、欧洲阿尔卑斯山区等频繁暴发大型甚至特大型泥石流灾害,阻断交通,损失巨大。因此,气候变化影响下高山区泥石流的现实危害和潜在风险正日益引发关注17-21

国内外学者对高山区泥石流成因和起动条件等已开展大量研究,但由于起动机制复杂,其预测预警仍非常困难,因此,深入研究高山区泥石流的形成条件和机制,提出科学有效的预测预警和防控策略,不仅是紧迫的国家需求,而且具有重要的科学价值。目前,针对高山区泥石流的研究涵盖暴发成因及起动机制22-30,动力过程、泥沙输送及地貌效应2631-34,泥石流事件与气候条件的关系35-37等。近年来,在对典型泥石流事件成因分析的基础上,开展冰川冻土体消融破坏机制、冰碛土泥石流起动特征等研究。同时,在现阶段还难以完全揭示高山区泥石流形成物理机制的实际情况下,尝试从统计角度挖掘泥石流发生与气象(水、热)条件的关系和暴发阈值。本文简要回顾近期高山区泥石流暴发成因和机制的主要研究进展,述评已有成果并探讨未来研究应关注的几个问题,以期促进高山区泥石流研究进一步深入。

1 典型高山区泥石流暴发与气象(水热)条件的关系

尽管全球气候变化的研究和地面监测主要集中于低海拔平原区,不过相关的研究已证实高山区气候变化和全球气候变化的一般趋势是吻合的,且高纬度或高海拔山区温度变化更为显著,升温速率会随着海拔的升高而增大(即升温海拔依赖现象elevation-dependent warming, EDW)38-40。纬度较高的欧洲阿尔卑斯山区Segl-Maria站(瑞士东南部瑞意边境,46°25.9′ N、9°45.7′ E,海拔1 804 m)和海拔较高的我国青藏高原波密站(藏东南,29°51.5′ N、95°46.2′ E,海拔2 736 m,)气象监测数据显示气候(尤其气温)呈现显著变化(图1)。其中,Segl-Maria站和波密站气温均呈上升趋势[图1(a)],Segl-Maria站监测系列较长,1980年以前升温较缓,1980年以来升温趋势显著;波密站监测系列较短,自20世纪60年代开始监测以来气温显著上升。相对而言,降水的区域分异明显,且波动十分强烈[图1(b)],Segl-Maria站年降水量仅有微弱上升趋势,波密站年降水量上升趋势较为显著。

图1

图1   欧洲阿尔卑斯山区Segl-Maria站和我国藏东南波密站年平均气温(a)和年降水量(b)变化

数据来源:meteoswiss(http://www.meteoswiss.admin.ch),中国气象科学数据中心(http://data.cma.cn)

Fig.1   Variations of annual mean air temperature and annual precipitation based on monitoring at Segl-Maria Station (European Alps) and Bomi Station (Southeast Tibet)


虽然高山区泥石流的发生不仅受气候因素(降水、气温)影响,还受地质地貌(岩性、坡度、局部地形)和物源(储量、级配构成)等其他因素制约,但在其他因素相对不变的条件下,气候变化引起的升温和降雨变化(强降雨事件增多)无疑会促进高山区泥石流的发生。图2为基于历史事件记录的欧洲阿尔卑斯山区和我国藏东南地区典型流域(区域)泥石流发生频率变化,其中,图2(a,b)为单一流域,图2(c,d)为区域范围。总体上看,这两个区域泥石流发生频率呈上升趋势,其中瑞士Ritigraben流域[图2(a)]已有的历史记录中超过一半的泥石流事件发生在近30年;瑞士Dorfbach流域[图2(b)]近百年来泥石流发生频率自1990年以来明显上升;法国阿尔卑斯山区[图2(c)]1970年以来和我国藏东南地区[图2(d)]近1950年以来泥石流发生频率总体也呈波动上升趋势,这与两个地区的气候变化尤其气温变化总体趋势相一致。图2(d)中藏东南地区泥石流发生频率统计未包括古乡沟泥石流事件,因为古乡沟泥石流暴发与1950年察隅8.0级地震有密切联系41。随着震后沟内松散物源逐渐减少,其泥石流发生频率和强度相应呈递减趋势42。为在宏观上准确掌握气候变化影响下区域泥石流发生频率变化,应尽可能排除地震等非气候激发因素影响,考虑物源为非限制因素(即物源充足)的泥石流事件,故古乡沟泥石流事件未予考虑。另外,需要指出的是,对于法国阿尔卑斯山区和藏东南地区而言,直接比较两者泥石流发生频率大小意义不大,因为不同资料对泥石流事件的统计遴选标准有所差异,法国阿尔卑斯山区的数据包含了各种规模的泥石流事件,而藏东南地区的泥石流事件根据已有文献资料汇总,更侧重中等规模以上泥石流事件,对小规模事件可能覆盖不足。即便如此,不妨碍从宏观上考察两个区域泥石流暴发频率的总体趋势。

图2

图2   近百年来欧洲阿尔卑斯山区和我国藏东南地区典型流域(区域)高山区泥石流发生频率变化

数据来源:Ritigraben流域43-47,Dorfbach流域48,法国阿尔卑斯山区49,藏东南地区50-66

Fig.2   Frequency variations of debris flow occurrence in typical high mountain basins (regions) in European Alps and Southeast Tibet in the past century


分析欧洲阿尔卑斯山区和我国藏东南地区泥石流发生频率与气候变化的统计结果,可以看到高山区泥石流暴发与气象条件存在紧密关系,水热条件变化对高山区泥石流形成具有重要影响。许多国内外学者尝试从降雨和气温两个气象因子入手,挖掘泥石流暴发和两个因素的响应关系和统计规律35-3767-70。已有的研究中,降雨因子主要包括前期雨量、临阵降雨强度,而气温因子包括前期积温、前期均温、暴发前日最高气温等(表1)。例如,基于美国落基山脉高山区27场冰雪消融形成滑坡(泥石流)事件,分析滑坡触发时间与气温(采用日最高气温6日滑动均值)的关系,通过统计分析获得冰雪融化形成滑坡的阈值气温68;通过分析藏东南帕隆藏布流域典型冰川泥石流沟10场大型泥石流过程暴发时间和气象条件,建立冰川(冰川融雪)泥石流起动的经验判定模型69。也有学者尝试将气象因子(日最高温度、日降雨量)与堆积体稳定性指标(泥水位、地表位移、含水率)相结合,建立冰川降雨型泥石流预警模型71

表1   部分高山泥石流暴发事件与气象因子关系分析实例

Table 1  Typical case studies of correlations between debris flow events and climate factors in high mountains

降水指标气温指标泥石流指标区域/流域文献来源
3日累积降水*暴发时间瑞士阿尔卑斯山Ritigraben35
日最高气温6日滑动均值滑坡暴发美国落基山脉68
3日累积降水3日最高气温之和暴发时间中国藏东南古乡沟70
日降水日最高气温洪峰流量中国藏东南古乡沟36
累积降水积温#暴发时间中国藏东南天摩沟37
累积降水前期均温暴发时间中国藏东南地区69

注:*基于1966—1994年日降水数据系列,计算日均降水量和标准差,分析显示当3日累积降水量超过日均降水量+4倍标准差时一般会发生泥石流;滑坡泥石流数据系列1925—1997年共27场,全部发生在日最高气温6日滑动均值首次超过14.4 ℃后的3周内,其中1周内发生14场滑坡(占比52%),2周内发生23场滑坡(占比85%);#采用连续2或3天日最低气温在0 ℃以上或上一场泥石流暴发以来的日均温累积。

新窗口打开| 下载CSV


2 高山区泥石流成因和机制

和其他环境暴发的泥石流过程类似,在起动成因上高山区泥石流可分为土力类(由冰崩、雪崩、岩崩、冰碛物滑坡等触发转化形成)和水力类(由降雨和融雪径流通过底蚀和侧蚀过程形成)两大类(图3),但在高山区,冰川、冻土、岩体、冰碛物坡体的强度和稳定性不但受降水影响,而且受温度制约,因为温度不仅影响冰体(岩体)稳定性,还影响冰雪融化和冻土消融,进而影响径流和地下水过程72-73,所以高山区泥石流的成因和过程十分复杂,往往是土力类和水力类过程相互促进、互为依托的结果,其研究涉及冰冻圈科学、土力学、岩石力学、山坡水文学、泥沙运动力学等多个学科。

图3

图3   高山区泥石流主要起动类型和研究重点

Fig.3   Schematic diagram of the two macro-groups of debris flows in high mountains and related research highlights


2.1 典型泥石流事件成因

高山区泥石流可能由不同的环境条件触发,但大部分泥石流事件发生在夏季(或初秋),说明水热(降雨、温度)条件对泥石流激发形成有重要影响。表2列出近年来国内外研究报道的典型高山区泥石流事件,其中国内的研究主要集中于藏东南地区,尤其以近年十分活跃的天摩沟为典型,国外则涵盖印度、北美、欧洲和南美等地区。

表2   近年国内外报道的典型高山区泥石流事件及成因/机制

Table 2  Typical debris flows and their causes in high mountains reported in recent years

地区区域/流域暴发时间泥石流规模/104 m3成因/机制文献来源
亚洲中国藏东南天摩沟

2007-09-04

2010-07-25

2010-09-03

2018-07-11

10~100升温和降雨触发冰崩、滑坡,沟道短暂形成堰塞体后溃决24283779-82
中国藏东南色东普沟

2018-10-17

2018-10-29

约1 500

约700

升温和2017年米林6.9级地震共同引发冰崩84-86
印度背阿坎德邦Gangotri冰川2017-07-16/07-19790±10冰川退缩、冰碛物消融失稳、连续降雨等多因素共同作用触发冰碛堰塞湖溃决2983
北美洲美国华盛顿州喀斯喀特山脉Rainier山2006-11-06/11-07约5强降雨,起动区沟蚀+流通区侧蚀26
加拿大不列颠哥伦比亚省Meager山火山区2010-08-06约4 850山体滑坡75
欧洲瑞士Zermatt山谷1864—2008年(共118场)5—8月,短时强暴雨引发;9—10月,长时间暴雨引发87
瑞士Ritigraben岩石冰川1958—2005年(共47场)0.1~2.7冰川冻土消融退化,松散堆积物形成、补给和蠕移88
瑞士Bondasca山谷2012-07-05/09-24(共4场)2011年冬季岩崩产生大量物源,2012年汛期降雨激发形成泥石流89
2017-08-23/08-25(共15场)

54.5±5

(第1场规模)

2017年岩崩产生巨量物源,泥石流过程无降水贡献3
意大利、法国、瑞士三国(17个位置)

1983—2003年

(共17场,I类9场,II类2场,III类6场)

I类<80

II类<10

III类<15

I类:长时强降雨,坡积物水分饱和失稳;II类:短时暴雨破坏冰川径流系统;III类:冰湖溃决或冰雪融化6
法国阿尔卑斯山区1961—2000年强降雨90
挪威Fjærland山2004-05-0824冰湖溃决34
俄罗斯高加索山区Kolka-Karmadon2002-09-2010 000岩体/冰体滑坡74
冰岛Gleidarhjalli地区1999-06-10/06-12约0.3冰雪快速消融22
挪威Fjærland2004-05-0824冰湖溃决34
南美洲阿根廷巴塔哥尼亚安第斯山脉Rio Manso冰川河谷2009-05

洪峰流量

4 100 m3⋅s-1

强降雨,冰碛坝漫顶,冰湖溃决91
秘鲁Cordillera Blanca的Rio Santa山谷

1962-01-10

1970-05-31

约1 300

约5 300

冰崩、岩崩引发

地震触发冰崩、岩崩

76-77

新窗口打开| 下载CSV


总体上看,由强降雨、冰川融雪(或冰川融雪与降雨耦合)形成的水力类泥石流过程和由冰崩、雪崩、滑坡等土力类过程触发转化形成的泥石流过程都有发生,但大型或特大型冰川泥石流多由土力类过程触发,如俄罗斯高加索山区北奥赛梯Kolka-Karmadon冰川泥石流 74,加拿大Meager山区泥石流75,以及秘鲁安第斯山脉Rio Santa峡谷泥石流76-77等,其规模都在千万甚至亿立方米量级。

土力类过程和水力类过程的耦合对泥石流的触发和规模放大有重要影响。我国藏东南的天摩沟在过去十多年里十分活跃,发生了数次泥石流(表2),按照规模进行分类78,均为大规模泥石流。研究认为,天摩沟第一次泥石流(2007-09-04)是由升温和降水引起的冰崩岩崩所触发,其他三次泥石流(2010-07-25,2010-09-03,2018-07-11)主要是由夏季降水和冰川融雪径流激发,这四场泥石流过程在演进过程中由于沟谷冰碛物沿程侵蚀或堵溃效应(滑坡或雪崩短暂形成冰碛堰塞湖后溃决)而规模不断放大24283779-82。印度喜马拉雅山区Gangotri冰川的泥石流事件也是由多种因素耦合触发形成,包括冰川退缩、冰碛物消融退化形成松散堆积物、持续降雨以及冰碛湖溃决等2983。除强降雨外,因升温而引起的冰雪快速消融形成径流也是高山区激发形成泥石流的一种重要机制22,因为冰川、冻土退缩形成的松散堆积物在径流冲蚀作用下极易失稳形成泥石流。

瑞士阿尔卑斯山区Bondasca山谷泥石流事件显示物源条件及其变化对泥石流发育形成有重要影响3。Bondasca山谷2012—2017年共发生19起泥石流事件,这些事件均与两次岩崩密切相关。第一次岩崩发生在2011年冬季(12月27日),产生1.5×106~1.7×106 m3的松散堆积物;第二次发生在2017年夏季(8月23日),产生(3±0.02)×106 m3松散堆积物。2011年冬季发生的第一次岩崩并没有立即转化为泥石流,不过,2012年夏季的一般强度降雨引发了4场泥石流。但随后的2013—2015年,类似强度的降雨过程并未进一步触发泥石流事件(说明2012年的4场泥石流已基本将2011年崩塌产生的松散物源输送至下游)。2017年夏季的第二次岩崩,岩体崩落过程中撞击峡谷冰川,几乎立即转化为泥石流,在9.5小时内发生了10次泥石流,在之后2天内又发生了2次。重要的是,2017年岩崩引起的泥石流几乎完全没有降雨过程参与。

2.2 冰川及冰碛物坡体/岩体失稳机制

大型及特大型冰川泥石流暴发的缘起多是土力学过程,如冰缘或冰碛物坡体(岩体)的突然崩落、滑坡等3212872-7380。这一方面提供了大量的“准”泥石流物源,另外一方面,由于高山区沟道巨大的高程落差,在崩塌(滑坡)体巨大能量冲击下,下游陡峭坡体(沟谷)上的松散冰碛物或冰湖易于失稳。由于这种崩塌(滑坡)过程多发生在气温较高的夏季,冰碛物堆积体一般含水率较高,因而在失稳后更易转化为泥石流92,且其泥石流过程通常具有比其他环境泥石流高得多的流速(如藏东南天摩沟2007年9月4日暴发的冰川泥石流速度估算达到40 m⋅s-1甚至更高)和破坏力676-7780

近年大量研究尝试通过控制实验或野外原型观测,力图揭示冰川、岩石及冰碛土的失稳机制和过程,即分析冰川(岩石、冰碛物)剪切应力与温度之间的关系、断裂临界及预测模型。与一般(岩)土体失稳通常与含水率(孔隙水压力)变化紧密相关有所不同,高海拔冰川冻土区,冰体(岩体)的脆断还与温度变化关系十分密切93。冰填充的岩石节理在冰川和基岩冻土区十分常见,这种节理由于冰分凝作用而不断扩大121894。冰填充的基岩节理的刚度和强度是正应力和温度的函数,如果山坡(岩石或冰碛物)的稳定由冰填充的节理维持,其稳定系数(稳定性)将随着温度升高而降低95-96

研究发现,冰冻状态向消融状态的往复过渡可能对岩体(坡体)稳定有十分重要的影响18。因而,近年的工作多针对冰点(0 ℃)附近的温度开展岩体剪切破坏研究97-99。目前已有实验对冰填充的岩石节理破坏过程进行精细观测,这些实验或基于高山岩石的原型监测100,或使用冰川冻土区采集的原状冰芯、岩芯及人工样品(如混凝土等)在室内开展9597-99101-103,且通常采用声发射检测技术捕捉冰川或岩石脆断时的临界状态。

对冰和岩石-冰交接面的脆裂剪切破坏实验显示,升温和卸载(即去除岩石或沉积物上覆覆盖层)都会导致冰填充岩石节理的剪切阻力显著降低97-98104。基于摩尔-库伦破坏准则,分析冰填充岩石节理破坏临界剪切力。

τ=σ×tanφ+c

式中:τ为冰填充岩石节理破坏时的剪切应力,是正应力σ、内聚力c和摩擦角φ的函数。

文献[99]通过控制实验[温度区间为(-8±0.1)~(-0.5±0.1) ℃],拟合得到冰冻岩石节理破坏的临界剪切力与正应力和温度的函数关系[式(2)、(3)]。尽管拟合关系式中的系数在不同环境条件下应存在差异,但至少反映内聚力c和摩擦系数μ(即tanφ)随温度T上升(由冰冻状态逐渐上升至冰点附近)而减小的一般特征。

c=53.3-73.5×T
μ=0.42-0.21×T

除冰川退化外,高山区多年冻土的消融对坡体稳定也有重要影响。相对而言,基岩-坡体稳定性和冰川退化之间的关系已开展较多的研究,而多年冻土及其动态变化对坡体稳定性的影响近期才得到关注12105。陡峭岩石上多年冻土退化受岩石裂隙水渗滤的强烈影响18。当富含冰的泥沙堆积物中的冰融化时会发生“消融固结”作用,导致孔隙水压力上升105,原来在冰冻条件下稳定的泥沙坡积体(冰碛体)趋于失稳。因而,升温引起的多年冻土消融退化很可能引起高山区山坡失稳规模增大、频率上升106

不过,尽管已有大量证据支撑岩体、冻土升温而失稳破坏的事实17107-109,但将单个失稳破坏事件确定无疑地归结为由升温引发还很困难。需要指出的是,高山区多年冻土具有复杂的空间分布特征,受坡度、坡向、海拔、阳光辐射和降雪等时空分布的影响105110,坡体失稳及物质运动输移与温度变化有关,但两者之间关系的强度区间和频率范围十分宽广1292111。基于瑞士阿尔卑斯山区、勃朗峰(Mount Blanc massif)和新西兰南阿尔卑斯山脉53次新近大型岩石崩塌和事件发生季节气象条件(日最高气温)的分析显示,除瑞士阿尔卑斯山区24场大型崩塌中的14场发生前有一天或多天高温记录,勃朗峰(仅2年监测数据)和新西兰南阿尔卑斯山的崩塌事件和气温监测数据并没有显著性统计结果支撑高温天气对应更高的崩塌发生率112-113。这说明升温导致的冰川冻土消融与泥沙堆积物坡体/岩石破坏失稳之间可能存在时间延迟,而这种延迟具有很大的不确定性。

2.3 冰碛土泥石流起动特征

近年国内对高山区泥石流的研究关注冰碛土的起动特征和影响因素。我国冰碛土广泛分布在青藏高原及周边区域,与分布于干旱河谷的宽级配砾石土体特征不同,冰碛土虽也属宽级配砾石土体,但粗大颗粒多、黏粒含量少,因此摩擦阻力大、黏滞阻力小30。现代冰碛土一般堆积于冰缘区末端或冰蚀沟谷,而老冰碛土则一般为历史冰期遗存的冰碛物历经化学、物理和生物作用所形成。

国内冰碛土起动的研究目前涉及三个典型区域:基于川西贡嘎山地区开展冰碛物物源补给特征和形成机制的研究27114-115,分析得到物源粒径的弱双峰型分布特征,将物源汇集过程分为沟道汇集阶段、土体粗化阶段和循环冻融阶段三个阶段,提出这类泥石流形成过程的四阶段模式;以中巴公路喀喇昆仑山区原状冰碛土开展起动实验,分析土体不同初始含水率条件下融水冲刷冰碛物形成泥石流的起动过程116,实验发现泥石流起动类型为坍塌推移型,探讨含水率与渗流、冲刷作用及孔隙水压力的关系;针对藏东南帕隆藏布流域嘎隆拉冰川末端三种冰碛土体(经过风化改造的老冰碛土体、现代冰碛土体和混合冰碛土体)开展降水与冰雪融水作用下泥石流起动实验,比较不同颗粒组成、不同实验条件下的土体起动泥石流特征30。实验发现,随黏粒含量不同,冰碛土起动特征存在明显差异。当黏粒含量较高时(>3%),土体发生铲蚀+面蚀型泥石流起动;当黏粒含量中低时(不高于3%),大部分坡面泥石流起动以掏蚀+坍塌型为主;当黏粒含量过低时(<0.32%),冰碛土体不易起动泥石流30。通过对帕隆藏布流域嘎隆寺沟不同细粒含量的冰碛土开展比重和相对密度测试以及实验,探讨细粒含量对冰碛土抗剪强度的影响。实验发现,细粒含量引起孔隙结构的差异,一定范围内,细粒含量升高导致抗剪强度降低117

3 未来研究应关注的问题

3.1 宏观尺度气候变化与高时空分辨率气象数据

高山区泥石流暴发与气候条件(尤其是气温和降水)密切相关。现有研究多以特定泥石流事件或特定泥石流沟为对象分析高山区泥石流起动与气象条件的关系,未来应关注小流域与区域乃至全球尺度的结合。研究气候变化(如升温或高强度降水事件概率上升等)条件下高山区泥石流起动,针对IPCC气候报告(2020—2050年),定量评估典型高山区(如藏东南地区)气候的可能变化趋势,建立完善多尺度降水-气温经验模型,藉此在区域甚至全球尺度上分析气候变化影响下的高山区泥石流未来特征。

基于统计方法建立的泥石流预判方法的可靠性和准确性一方面依赖于数据样本的大小,如泥石流事件样本数,考虑的降雨、气温、物源等因子数;另一方面则受制于气象数据的精度和时空分辨率。高山区地形变化强烈,其气象因子(尤其降雨)空间分异十分显著。由于高山区气象站点分布稀疏,目前在分析特定流域泥石流暴发成因时,多采用泥石流暴发流域附近站点的气象数据进行替代,客观上存在误差和不确定性。因而,应对高山区典型泥石流流域气象监测站点进行加密布置,以获取高时空分辨率的气象数据。基于RCP气候变化情景模式进行空间降尺度分析,结合遥感降水栅挌数据多边型区域纠偏等方法获取研究区时间序列气象数据资料69是较好的尝试,但仍需加强与地面站点实测数据比对和验证。

3.2 高山区冰川冻土(冰碛物坡体/岩体)失稳及物源变化的不确定性

高山区冰崩、雪崩、山体滑坡等土力类过程触发的泥石流往往规模巨大,灾害严重,但崩塌和滑坡失稳的时间和位置仍难以观测和预测。冰体(冰碛物坡、岩石)断裂、崩塌和滑坡失稳等存在时间尺度上差异巨大的延迟作用,其范围可能跨越天—年—百年,甚至更长时间尺度,具有强烈的不确定性(图4),这也是预测预判冰体(岩石、冰碛物)破坏失稳的巨大难点102。未来的研究应明晰影响高山区冰体(岩体和冰碛物)稳定的本底条件(地质岩性等)和激发因子(气温、冰分凝作用等),探求岩体和冰碛物坡体失稳破坏的核心控制因子和临界条件。

图4

图4   高山区坡体失稳在时间和断裂深度上的分布区间12

Fig.4   Time and depth scales involved in slope stabilities in high mountains12


冰川冻土和冰碛物坡的稳定受气候变化的显著影响,应关注由于气候变化(尤其气温上升)等引起高山区冰川或多年冻土区0 ℃等温线的上移变化,因为0 ℃等温线的上移意味着原本常年被冰雪覆盖或处于冰冻状态的岩石或冰碛坡积物将消融出露,转化为潜在的泥石流物源。根据未来气候变化的可能情景,估算典型高山区0 ℃等温线上移的可能范围,开展系统的野外调查,并借助遥感和GIS技术,估算潜在可“动”物源量级、分布和属性(级配构成、岩性),特别注意大规模崩塌滑坡事件造成的“准”泥石流物源量的急剧增加对潜在泥石流暴发的影响。

3.3 高山区泥石流发育的动力学机制

目前对高山区泥石流的起动机制尚需进一步回答两个基本问题:(1)对于由冰川(冰碛物坡/岩体)滑坡、崩塌等土力类过程触发形成的泥石流,揭示含冰/雪土体的液化机制和重点因子(如孔隙压力)的动态变化规律,在此基础上明晰滑坡/崩塌体转化为泥石流需要的地形地貌和环境条件(如坡体坡度及长度、温度、土体含水量、物源特征等);(2)对于降雨、冰雪融水等水力类过程引发的泥石流,需阐明水动力条件下土体颗粒起动的动力学机制。

物理模型实验和野外原型观测是泥石流起动研究的两个重要手段。物理模型实验在研究泥石流起动的动力学机制方面不可或缺6,但受模型比尺、实验泥沙颗粒粒径、高山区冰沙混合物制作、可控温度条件等客观因素制约,小规模模型实验难以真实反映高山区野外“自然”泥石流起动和动力过程118。随着传感器、信号存储和传输等技术手段的进步,野外原型观测在泥石流研究日益受到重视119-124。不过,针对高山区复杂环境泥石流的原型观测和监测分析仍十分薄弱。有必要以典型泥石流沟为对象,集成地声、次声、视频、压(应)力监测等技术手段,构建涵盖气象(降雨、气温)、地震波、次声波、流速、泥位、孔隙压力、正压力等指标的监测体系,开展沿程多断面高时空分辨率气象和泥石流起动的原型观测,系统收集泥石流起动过程中重点因子动态变化的数据资料。这将有助于检验和修正现有高山区泥石流起动模型,深入认识泥石流起动和演进过程的关键影响因子和作用机制。

4 结语

在全球气候变化的大背景下,高山区尤其高山冰川或积雪的边缘地带是泥石流灾害的多发区。近三十年来国内外围绕高山区泥石流暴发与气象条件的关系、典型高山区泥石流暴发成因、冰川冻土/冰碛物坡体消融失稳机制、冰碛土起动特征等已开展广泛研究,但由于研究对象十分复杂,实验和野外观测难度巨大,高山区泥石流发育机制和起动条件的研究依然任重道远。未来应继续加强高山区宏观尺度气候变化与高时空分辨率气象数据监测分析,开展物源动态变化和补给速率调查研判,明晰高山区冰川/冰碛物坡体失稳机制和临界条件,揭示高山区泥石流发育的动力学机制,推动高山区泥石流研究进一步深入。

参考文献

Du RonghengZhang Shucheng.

Characteristics of glacial mud-flows in south-eastern Qinghai-Xizang Plateau

[J]. Journal of Glaciology and Geocryology, 198133): 10-18.

[本文引用: 2]

杜榕桓章书成.

西藏高原东南部冰川泥石流的特征

[J]. 冰川冻土, 198133): 10-18.

[本文引用: 2]

Xu DaomingFeng Qinghua.

Studies on catastrophes of glacial debris flow and glacial lake outburst flood in China

[J]. Journal of Glaciology and Geocryology, 1988103): 284-289.

徐道明冯清华.

冰川泥石流与冰湖溃决灾害研究

[J]. 冰川冻土, 1988103): 284-289.

Walter FAmann FKos Aet al.

Direct observations of a three million cubic meter rock-slope collapse with almost immediate initiation of ensuing debris flows

[J/OL]. Geomorphology, 20203512021-04-06]. .

[本文引用: 4]

Li HonglianCai Xiangxing.

The glacial debris flow of China

[J]. Bulletin of Soil and Water Conservation, 198996): 1-9.

[本文引用: 2]

李鸿琏蔡祥兴.

中国冰川泥石流的一些特征

[J]. 水土保持通报, 198996): 1-9.

[本文引用: 2]

Liu JiankangZhang JiajiaGao Boet al.

An overview of glacial lake outburst flood in Tibet, China

[J]. Journal of Glaciology and Geocryology, 2019416): 1335-1347.

[本文引用: 1]

刘建康张佳佳高波.

我国西藏地区冰湖溃决灾害综述

[J]. 冰川冻土, 2019416): 1335-1347.

[本文引用: 1]

Chiarle MIannotti SMortara Get al.

Recent debris flow occurrences associated with glaciers in the Alps

[J]. Global and Planetary Change, 200756123-136.

[本文引用: 4]

Yongbo TieLi Zongliang.

Progress in the study of glacial debris flow mechanisms

[J]. Advances in Water Science, 2010216): 861-866.

[本文引用: 1]

铁永波李宗亮.

冰川泥石流形成机理研究进展

[J]. 水科学进展, 2010216): 861-866.

[本文引用: 1]

Wang TWu TWang Pet al.

Spatial distribution and changes of permafrost on the Qinghai-Tibet Plateau revealed by statistical models during the period of 1980 to 2010

[J]. Science of the Total Environment, 2019650661-670.

[本文引用: 1]

Yao TThompson LYang Wet al.

Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings

[J]. Nature Climate Change, 20122663-667.

Wu GuangjianYao TandongWang Weicaiet al.

Glacial hazards on Tibetan Plateau and surrounding alpines

[J]. Bulletin of Chinese Academy of Sciences, 20193411): 1285-1292.

邬光剑姚檀栋王伟财.

青藏高原及周边地区的冰川灾害

[J]. 中国科学院院刊, 20193411): 1285-1292.

Zemp MHaeberli WHoelzle Met al.

Alpine glaciers to disappear within decades?

[J/OL]. Geophysical Research Letters, 2006332021-04-06]. .

Harris CArenson L UChristiansen H Het al.

Permafrost and climate in Europe: monitoring and modelling thermal, geomorphological and geotechnical responses

[J]. Earth-Science Reviews, 2009923/4): 117-171.

[本文引用: 5]

Moore R DFleming S WMenounos Bet al.

Glacier change in western North America: influences on hydrology, geomorphic hazards and water quality

[J]. Hydrological Processes, 2009231): 42-61.

Quincey D JGlasser N F.

Morphological and ice-dynamical changes on the Tasman Glacier, New Zealand, 1990-2007

[J]. Global and Planetary Change, 2009683): 185-197.

[本文引用: 1]

Evans S GDelaney K B.

Catastrophic mass flows in the mountain glacial environment

[M/OL]// Snow and ice-related hazards, risks and disasters. New YorkAcademic Press2015563-606.

[本文引用: 1]

Cui PengGuo XiaojunJiang Tianhaiet al.

Disaster effect induced by Asian Water Tower change and mitigation strategies

[J]. Bulletin of Chinese Academy of Sciences, 20193411): 1313-1321.

[本文引用: 1]

崔鹏郭晓军姜天海.

“亚洲水塔”变化的灾害效应与减灾对策

[J]. 中国科学院院刊, 20193411): 1313-1321.

[本文引用: 1]

Fischer LKääb AHuggel Cet al.

Geology, glacier retreat and permafrost degradation as controlling factors of slope instabilities in a high-mountain rock wall: the Monte Rosa east face

[J]. Natural Hazards and Earth System Sciences, 20066761-772.

[本文引用: 2]

Gruber SHaeberli W.

Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change

[J/OL]. Journal of Geophysical Research, 20071122021-04-06]. .

[本文引用: 3]

Huggel CCaplan-Auerbach JWessels R.

Recent extreme avalanches: triggered by climate change?

[J]. Eos, Transactions American Geophysical Union, 20088947): 469-470.

Korup OClague J J.

Natural hazards, extreme events, and mountain topography

[J]. Quaternary Science Reviews, 200928977-990.

Deline PGruber SDelaloye R.

Ice loss and slope stability in high-mountain regions

[M/OL]// Snow and ice-related hazards, risks and disasters. New YorkAcademic Press2015521-561.

[本文引用: 2]

Decaulne ASaemundsson TPetursson O.

Debris flows triggered by rapid snowmelt in the Gleidarhjalli area, northwestern Iceland

[J]. Geografiska Annaler, 200587487-500.

[本文引用: 3]

Lu AnxinDeng XiaofengZhao Shangxueet al.

Cause of debris flow in Guxiang valley in Bomi, Tibet Autonomous Region, 2005

[J]. Journal of Glaciology and Geocryology, 2006286): 956-960.

鲁安新邓晓峰赵尚学.

2005年西藏波密古乡沟泥石流暴发成因分析

[J]. 冰川冻土, 2006286): 956-960.

Hu GuishengChen NingshengDeng Mingfenget al.

Classification and initiation conditions of debris flows in Linzhi area, Tibet

[J]. Bulletin of Soil and Water Conservation, 2011312): 193-198.

[本文引用: 2]

胡桂胜陈宁生邓明枫.

西藏林芝地区泥石流类型及形成条件分析

[J]. 水土保持通报, 2011312): 193-198.

[本文引用: 2]

Yongbo Tie.

Source converge process and hazards of moraine supply debris flow under the condition of freezing and thawing

[J]. Journal of Catastrophology, 2012274): 12-16.

铁永波.

冻融条件下冰碛补给型泥石流物源汇集过程与灾变初探

[J]. 灾害学, 2012274): 12-16.

Legg NMeigs AGrant Get al.

Debris flow initiation in proglacial gullies on Mount Rainier, Washington

[J]. Geomorphology, 2014226249-260.

[本文引用: 2]

Jiang JintaoYongbo TieWang Shuai.

Study on the forming mechanism of moraine-supplied debris flow: take Xiaohezi valley in the east slope of Gongga Mountain as an example

[J]. Journal of Geological Hazards and Environment Preservation, 2016274): 21-25.

[本文引用: 1]

江金涛铁永波王帅.

冰碛补给型泥石流形成机制研究: 以贡嘎山东坡小河子沟为例

[J]. 地质灾害与环境保护, 2016274): 21-25.

[本文引用: 1]

Wei RZeng QDavies Tet al.

Geohazard cascade and mechanism of large debris flows in Tianmo gully, SE Tibetan Plateau and implications to hazard monitoring

[J]. Engineering Geology, 2018233172-182.

[本文引用: 3]

Kumar ABhambri RTiwari S Ket al.

Evolution of debris flow and moraine failure in the Gangotri Glacier region, Garhwal Himalaya: hydro-geomorphological aspects

[J]. Geomorphology, 2019333152-166.

[本文引用: 2]

Chen NingshengWang ZhengTian Shufenget al.

Study on debris flow process induced by moraine soil mass failure

[J]. Quaternary Sciences, 2019395): 1235-1245.

[本文引用: 4]

陈宁生王政田树峰.

冰碛土体起动泥石流的特征研究

[J]. 第四纪研究, 2019395): 1235-1245.

[本文引用: 4]

Deng Yangxin.

Process of accumulation and characteristics of glacial debris flow deposits transformed by Moraine

[J]. Acta Sedimentologica Sinica, 1995134): 37-48.

[本文引用: 1]

邓养鑫.

冰碛转化为冰川泥石流堆积过程及其沉积特征

[J]. 沉积学报, 1995134): 37-48.

[本文引用: 1]

You Yong.

Transporting characteristics of debris flow at Guxiang accumulation fan in Tibet Autonomous Region

[J]. Bulletin of Soil and Water Conservation, 2001212): 28-30.

游勇.

西藏古乡沟堆积扇泥石流输沙特征

[J]. 水土保持通报, 2001212): 28-30.

He YipingHu KaihengWei Fangqianget al.

Characteristics of debris flow in Polongzangbu basin of Sichuan-Tibet Highway

[J]. Journal of Soil and Water Conservation, 20013): 76-80.

何易平胡凯衡韦方强.

川藏公路迫隆藏布流域段泥石流活动特征

[J]. 水土保持学报, 20013): 76-80.

Breien HDe Blasio F VElverhøi A.

Erosion and morphology of a debris flow caused by a glacial lake outburst flood, Western Norway

[J]. Landslides, 200853): 271-280.

[本文引用: 3]

Rebetez MLugon RBaeriswyl P A.

Climatic change and debris flows in high mountain regions: the case study of the Ritigraben Torrent (Swiss Alps)

[M]// Climatic change at high elevation sites. Dordrecht, the NetherlandsSpringer1997139-157.

[本文引用: 3]

Liu JiankangCheng Zunlan.

Meteorology conditions for frequent debris flows from Guxiang valley in Tibet, China

[J]. Science Technology and Engineering, 2015159): 45-50.

[本文引用: 1]

刘建康程尊兰.

西藏古乡沟泥石流与气象条件的关系

[J]. 科学技术与工程, 2015159): 45-50.

[本文引用: 1]

Deng M FChen N SLiu M.

Meteorological factors driving glacial till variation and the associated periglacial debris flows in Tianmo Valley, south-eastern Tibetan Plateau

[J]. Natural Hazards and Earth System Sciences, 2017173): 345-356.

[本文引用: 5]

McBeanGAlekseev GChen Det al.

Arctic climate: past and present

[M]// Arctic climate impact assessment. Cham, SwitzerlandSpringer201722-60.

[本文引用: 1]

Qin JYang KLiang Set al.

The altitudinal dependence of recent rapid warming over the Tibetan Plateau

[J]. Climatic Change, 200997321-327.

Pepin NBradley R SDiaz H Fet al.

Elevation-dependent warming in mountain regions of the world

[J]. Nature Climate Change, 201555): 424-430.

[本文引用: 1]

Zhu PingyiLuo DefuKou Yuzhen.

Debris flow development trend of Guxiang ravine, Xizang

[J]. Mountain Research, 1997154): 296-299.

[本文引用: 1]

朱平一罗德富寇玉贞.

西藏古乡沟泥石流发展趋势

[J]. 山地研究, 1997154): 296-299.

[本文引用: 1]

Hu KaihengCui PengYou Yonget al.

Influence of debris supply on the activity of post-quake debris flows

[J]. The Chinese Journal of Geological Hazard and Control, 2011221): 1-6.

[本文引用: 1]

胡凯衡崔鹏游勇.

物源条件对震后泥石流发展影响的初步分析

[J]. 中国地质灾害与防治学报, 2011221): 1-6.

[本文引用: 1]

Stoffel MLièvre IConus Det al.

400 years of debris-flow activity and triggering weather conditions: Ritigraben, Valais, Switzerland

[J]. Arctic, Antarctic, and Alpine Research, 2005373): 387-395.

[本文引用: 1]

Stoffel M.

Magnitude-frequency relationships of debris flows: a case study based on field surveys and tree-ring records

[J]. Geomorphology, 201011667-76.

Permos.

Permafrost in Switzerland 2014/2015 to 2017/2018: glaciological report permafrost No. 16-19

[R]. Bern, SwitzerlandCryospheric Commission of the Swiss Academy of Sciences2019104.

Brigger KBrigger BChastonay Vet al. Naturlehrpfad Grächen[M]. DengesStiftung199360.

Fux-Anthamatten S. Familien-und Dorfchronik von Grächen 1900-2000[M]. GrächenEigenverlag2001632.

[本文引用: 1]

Willi CGraf CDeubelbeiss Yet al.

Methods for detecting channel bed surface changes in a mountain torrent-experiences from the Dorfbach torrent

[J]. Geographica Helvetica, 2015704): 265-279.

[本文引用: 1]

Pavlova IJomelli VBrunstein Det al.

Debris flow activity related to recent climate conditions in the French Alps: a regional investigation

[J]. Geomorphology, 2014219248-259.

[本文引用: 1]

Liang Guangmo.

On the debris flow hazards and its countermeasure along south section of Sichuan-Tibet road (the part Tibet)

[D]. ChengduSouthwest Jiaotong University2007.

[本文引用: 1]

梁光模.

川藏公路南线(西藏境内)泥石流灾害与防治对策

[D]. 成都西南交通大学2007.

[本文引用: 1]

Liqun Wang ZhaoyinQi Lijianet al.

Evolution of debris-flow dammed lake at Guxiang gully in Tibet

[J]. Journal of Sediment Research, 20155): 14-18.

吕立群王兆印漆力健.

西藏古乡沟泥石流堰塞湖演化规律

[J]. 泥沙研究, 20155): 14-18.

Li DejiYou Yong.

Bursting of the Midui Lake in Bomi, Xizang

[J]. Mountain Research, 19924): 219-224.

李德基游勇.

西藏波密米堆冰湖溃决浅议

[J]. 山地研究, 19924): 219-224.

Ruren Li Deji.

Debris flow induced by ice lake burst in the Tangbulang gully, Gongbujiangda, Xizang (Tibet)

[J]. Journal of Glaciology and Geocryology, 198681): 61-71.

吕儒仁李德基.

西藏工布江达县唐不朗沟的冰湖溃决泥石流

[J]. 冰川冻土, 198681): 61-71.

Zeng Qingli.

Geohazard chains and mechanism of two debris flows in Tianmo gully, southeast Tibetan

[C]// Proceedings of 2016 Challenges and Countermeasures of Sichuan-Tibet Railway Construction. BeijingChina Communications Press2017257-264. [ [

曾庆利.

西藏天摩沟泥石流灾害链过程及致灾机理

[C]//“川藏铁路建设的挑战与对策”2016学术交流会论文集. 北京人民交通出版社2017257-264.]]

Yang Fuhao.

Design of monitoring system for sliding slope body in special environment of Tibet Plateau

[D]. LhasaTibet University2020.

杨富豪.

西藏高原特殊环境下滑坡体监测与监控体系设计

[D]. 拉萨西藏大学2020.

Yin Yueping.

Study on characteristics and disaster reduction of rapid huge landslide on Bomi-Yigong in Tibet

[J]. Hydrogeology & Engineering Geology, 20004): 8-11.

殷跃平.

西藏波密易贡高速巨型滑坡特征及减灾研究

[J]. 水文地质工程地质, 20004): 8-11.

Ren JinweiShan XinjianShen Junet al.

Geological characteristics and kinematics of the rock fall-landslide in Yigong, southeastern Tibet

[J]. Geological Review, 20016): 642-647.

任金卫单新建沈军.

西藏易贡崩塌-滑坡-泥石流的地质地貌与运动学特征

[J]. 地质论评, 20016): 642-647.

Deng MingfengChen NingshengDing Haitaoet al.

The hydrothermal condition and formation mechanism of the group-occurring debris flows in the southeast Tibet in 2007

[J]. Journal of Natural Disasters, 2013224): 128-134.

邓明枫陈宁生丁海涛.

2007年西藏东南部群发性泥石流的水热条件及其形成机制

[J]. 自然灾害学报, 2013224): 128-134.

Li YuanlingWang JunchaoChen Longet al.

Characteristics and geneses of the group-occurring debris flows along Parlung Zangbo river zone in 2016

[J]. Research of Soil and Water Conservation, 2018256): 397-402.

李元灵王军朝陈龙.

2016年帕隆藏布流域群发性泥石流的活动特征及成因分析

[J]. 水土保持研究, 2018256): 397-402.

Zou RenzhouZhang JiajiaWang Junchaoet al.

The restricting factors and characteristics of debris flow fans of Bomi-Suotong village section of Palong Zangbu river basin in southeast Tibet

[J]. Journal of Sichuan Normal University (Natural Science), 2018413): 419-426.

邹任洲张佳佳王军朝.

藏东南帕隆藏布流域波密县城至索通泥石流堆积扇形成的制约因素与特征

[J]. 四川师范大学学报(自然科学版), 2018413): 419-426.

Xia Yuanzhi.

The research of distribution and formation for debris flow due to break of glacier lake in the Ranwu-Peilong sectionof the Sichuan-Tibet

[D]. ChongqingChongqing Jiaotong University2012.

夏远志.

川藏公路南线然乌至培龙段冰湖溃决泥石流分布规律及形成机制研究

[D]. 重庆重庆交通大学2012.

Zhang Binbin.

Study on debris flow characteristics in temperate glacier area of Pallon Tsangpo

[D]. ChengduSouthwest Jiaotong University2016.

张斌斌.

帕隆藏布流域海洋性冰川区泥石流特征研究

[D]. 成都西南交通大学2016.

Qi YunlongDeng Mingfeng.

Triggering mechanism of debris flows in Jiurong valley in Parlung Zangbo, Southeastern Tibet

[J]. Journal of Catastrophology, 2019343): 123-127.

齐云龙邓明枫.

川藏公路波密段九绒沟泥石流形成机制研究

[J]. 灾害学, 2019343): 123-127.

Wang WeiyuLi JunZhao Yuandi.

Study on the relationship between rainfall frequency and mudslide outbreak frequency: taking the mudslides in Zhamunonggou, Tibet, on August 2015 as an example

[J]. Journal of Gansu Sciences, 2020321): 60-65.

王伟宇李俊赵苑迪.

降雨频率与泥石流暴发频率关系研究: 以2015年8月西藏扎木弄沟泥石流为例

[J]. 甘肃科学学报, 2020321): 60-65.

Zhang Bingxian.

Evolution process and disaster prevention enlightenment of debris flow dammed lake in Azuonongba, Tibet

[J]. Yangtze River, 201950(): 65-67.

张丙先.

西藏阿左弄巴泥石流堰塞湖演化过程及防灾启示

[J]. 人民长江, 201950(): 65-67.

Jiang Zefan.

Geological hazards, their forming conditions and control along Sichuan-Xizang Highway

[J]. Acta Geologica Sichuan, 19963): 244-249.

[本文引用: 1]

姜泽凡.

川藏公路沿线地质灾害及其形成条件与整治对策

[J]. 四川地质学报, 19963): 244-249.

[本文引用: 1]

Chen NingshengZhou HaiboHu Guisheng.

Development rules of debris flow under the influence of climate change in Nyingchi

[J]. Advances in Climate Change Research, 20116): 412-417.

[本文引用: 1]

陈宁生周海波胡桂胜.

气候变化影响下林芝地区泥石流发育规律研究

[J]. 气候变化研究进展, 20116): 412-417.

[本文引用: 1]

Chleborad A F.

Use of air temperature data to anticipate the onset of snowmelt-season landslides: USGS open-file report 98-0124

[R]. Reston, VA, USAUS Geological Survey1998.

[本文引用: 2]

Jia Yang.

The impact mechanism of climate warming on mountain hazards in the southeast of Tibet

[D]. BeijingUniversity of Chinese Academy of Sciences2018.

[本文引用: 3]

贾洋.

气候变暖对藏东南山地灾害的影响机制

[D]. 北京中国科学院大学2018.

[本文引用: 3]

Zhang Shunying.

Meteorology conditions and forecasting for debris flows in Guxiang valley

[J]. Journal of Glaciology and Geocryology, 198022): 41-47.

[本文引用: 2]

张顺英.

西藏古乡沟泥石流暴发的气象条件及预报的可能性

[J]. 冰川冻土, 198022): 41-47.

[本文引用: 2]

Xie TaoYin QianfengGao Heet al.

Study on early warning model of glacial-rainfall debris flow based on excitation condition and stability of accumulation body

[J]. Journal of Glaciology and Geocryology, 2019414): 884-891.

[本文引用: 1]

谢涛尹前锋高贺.

基于激发条件和堆积体稳定性的冰川降雨型泥石流预警模型研究

[J]. 冰川冻土, 2019414): 884-891.

[本文引用: 1]

Delaloye RPerruchoud EAvian Met al.

Recent interannual variations of rockglaciers creep in the European Alps

[C]// Proceedings of 9th International Conference on Permafrost. Fairbanks, Alaska, USAUniversity of Alaska Fairbanks2008343-348.

[本文引用: 2]

Ikeda AMatsuoka NKääb A.

Fast deformation of perennially frozen debris in a warm rock glacier in the Swiss Alps: an effect of liquid water

[J/OL]. Journal of Geophysical Research, 20081132021-04-06]. .

[本文引用: 2]

Haeberli WHuggel CKääb Aet al.

The Kolka-Karmadon rock/ice slide of 20 September 2002: an extraordinary event of historical dimensions in North Ossetia, Russian Caucasus

[J]. Journal of Glaciology, 200450533-546.

[本文引用: 2]

Guthrie R HFriele PAllstadt Ket al.

The 6 August 2010 Mount Meager rock slide-debris flow, Coast Mountains, British Columbia: characteristics, dynamics, and implications for hazard and risk assessment

[J]. Natural Hazards and Earth System Sciences, 2012125): 1277-1294.

[本文引用: 2]

Evans S GBishop N FFidel S Let al.

Are-examination of the mechanism and human impact of catastrophic mass flows originating on Nevado Huascarán, Cordillera Blanca, Peru in 1962 and 1970

[J]. Engineering Geology, 20091081/2): 96-118.

[本文引用: 3]

Mergili MFrank BFischer J Tet al.

Computational experiments on the 1962 and 1970 landslide events at Huascarán (Peru) with r.avaflow: lessons learned for predictive mass flow simulations

[J]. Geomorphology, 201832215-28.

[本文引用: 3]

Chinese Academy of Sciences. Institute of Mountain Hazards and Environment. Research and prevention of debris flow[M]. ChengduSichuan Science and Technology Press1989.

[本文引用: 1]

中国科学院成都山地灾害与环境研究所. 泥石流研究与防治[M]. 成都四川科学技术出版社1989.

[本文引用: 1]

Yu ZhongshuiZhuoga DeqingCiren Luobuet al.

Preliminary analysis about the cause of “9.4” debris flow disaster in Tianmogou, Bomi, Tibet

[J]. The Chinese Journal of Geological Hazard and Control, 2009201): 6-10.

[本文引用: 2]

余忠水德庆卓嘎罗布次仁.

西藏波密县天摩沟“9.4”特大泥石流灾害成因初步分析

[J]. 中国地质灾害与防治学报, 2009201): 6-10.

[本文引用: 2]

Ge Y GCui PSu F H.

Case history of the disastrous debris flows of Tianmo watershed in Bomi County, Tibet, China: some mitigation suggestions

[J]. Journal of Mountain Science, 2014115): 1253-1265.

[本文引用: 2]

Qu YongpingXiao JinPan Yiwei.

Preliminary analysis on formation conditions of glacier debris flow in Southeast Tibet: a case of glacial debris flow in Tianmo Gully

[J]. Water Resources and Hydropower Engineering, 20184912): 177-184.

屈永平肖进潘义为.

藏东南地区冰川泥石流形成条件初步分析: 以天摩沟冰川泥石流为例

[J]. 水利水电技术, 20184912): 177-184.

Gao BoZhang JiajiaWang Junchaoet al.

Formation mechanism and disaster characteristics of debris flow in the Tianmo gully in Tibet

[J]. Hydrogeology & Engineering Geology, 2019465): 144-153.

[本文引用: 2]

高波张佳佳王军朝.

西藏天摩沟泥石流形成机制与成灾特征

[J]. 水文地质工程地质, 2019465): 144-153.

[本文引用: 2]

Singh RShekhar MPandey V Ket al.

Causes and geomorphological effects of large debris flows in the lower valley areas of the Meru and Gangotri Glaciers, Bhagirathi basin, Garhwal Himalaya (India)

[J]. Remote Sensing Letters, 201898): 809-818.

[本文引用: 2]

Tong LiqiangTu JienanPei Lixinet al.

Preliminary discussion of the frequently debris flow events in Sedongpu Basin at Gyalaperi Peak, Yarlung Zangbo River

[J]. Journal of Engineering Geology, 2018266): 1552-1561.

[本文引用: 1]

童立强涂杰楠裴丽鑫.

雅鲁藏布江加拉白垒峰色东普流域频繁发生碎屑流事件初步探讨

[J]. 工程地质学报, 2018266): 1552-1561.

[本文引用: 1]

Liu ChuanzhengJietang Tong Liqianget al.

Research on glacial/rock fall-landslide-debris flows in Sedongpu basin along Yarlung Zangbo River in Tibet

[J]. Geology in China, 2019462): 219-234.

刘传正吕杰堂童立强.

雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究

[J]. 中国地质, 2019462): 219-234.

Hu KaihengZhang XiaopengYou Yonget al.

Landslides and dammed lakes triggered by the 2017 Ms6.9 Milin earthquake in the Tsangpo gorge

[J]. Landslides, 201916993-1001.

[本文引用: 1]

Schneuwly-Bollschweiler MStoffel M.

Hydrometeorological triggers of periglacial debris flows in the Zermatt valley (Switzerland) since 1864

[J/OL]. Journal of Geophysical Research, 20121172021-04-22]. .

[本文引用: 1]

Lugon RStoffel M.

Rock-glacier dynamics and magnitude-frequency relations of debris flows in a high-elevation watershed: Ritigraben, Swiss Alps

[J]. Global Planetary Change, 201073202-210.

[本文引用: 1]

Baer PHuggel CMcardell B Wet al.

Changing debris flow activity after sudden sediment input: a case study from the Swiss Alps

[J]. Geology Today, 2017336): 216-223.

[本文引用: 1]

Jomelli VPech V PChochillon Cet al.

Geomorphic variations of debris flows and recent climatic change in the French Alps

[J]. Climatic Change, 20046477-102.

[本文引用: 1]

Worni RStoffel MHuggel Cet al.

Analysis and dynamic modeling of a moraine failure and glacier lake outburst flood at Ventisquero Negro, Patagonian Andes (Argentina)

[J]. Journal of Hydrology, 2012444/445134-145.

[本文引用: 1]

Iverson R MReid M ELogan Met al.

Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment

[J]. Nature Geoscience, 201142): 116-121.

[本文引用: 2]

Huggel CSalzmann NAllen Set al.

Recent and future warm extreme events and high-mountain slope stability

[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 20103681919): 2435-2459.

[本文引用: 1]

Murton J BPeterson ROzouf J C.

Bedrock fracture by ice segregation in cold regions

[J]. Science, 20063141127-1129.

[本文引用: 1]

Davies M C RHamza OLumsden B Wet al.

Laboratory measurement of the shear strength of ice filled rock joints

[J]. Annals of Glaciology, 200031463-467.

[本文引用: 2]

Davies M C RHamza OHarris C.

The effect of rise in mean annual temperature on the stability of rock slopes containing ice-filled discontinuities

[J]. Permafrost and Periglacial Processes, 200112137-144.

[本文引用: 1]

Krautblatter MVerleysdonk SFlores-Orozco Aet al.

Temperature-calibrated imaging of seasonal changes in permafrost rock walls by quantitative electrical resistivity tomography (Zugspitze, German/Austrian Alps)

[J/OL]. Journal of Geophysical Research, 20101152021-04-06]. .

[本文引用: 3]

Krautblatter MFunk DGünzel F K.

Why permafrost rocks become unstable: a rock-ice-mechanical model in time and space

[J]. Earth Surface Processes and Landforms, 2013388): 876-887.

[本文引用: 1]

Mamot PWeber SSchröder Tet al.

A temperature- and stress-controlled failure criterion for ice-filled permafrost rock joints

[J]. The Cryosphere, 20181210): 3333-3353.

[本文引用: 3]

Amitrano DGruber SGirard L.

Evidence of frost cracking inferred from acoustic emissions in a high alpine rock-wall

[J]. Earth and Planetary Science Letters, 2012341/34486-93.

[本文引用: 1]

Arenson L USpringman S M.

Triaxial constant stress and constant strain rate tests on ice-rich permafrost samples

[J]. Canadian Geotechnical Journal, 2005422): 412-430.

[本文引用: 1]

Arenson L USpringman S M.

Mathematical descriptions for the behaviour of ice-rich frozen soils at temperatures close to 0 °C

[J]. Canadian Geotechnical Journal, 2005422): 431-442.

[本文引用: 1]

Yamamoto YSpringman S M.

Axial compression stress path tests on artificial frozen soil samples in a triaxial device at temperatures just below 0 °C

[J]. Canadian Geotechnical Journal, 2014511178-1195.

[本文引用: 1]

Mccoll S TDavies T R H.

Large ice-contact slope movements: glacial buttressing, deformation and erosion

[J]. Earth Surface Processes and Landforms, 20123810): 1102-1115.

[本文引用: 1]

Harris CDavies M C REtzelmüller B.

The assessment of potential geotechnical hazards associated with mountain permafrost in a warming global climate

[J]. Permafrost and Periglacial Processes, 2001121): 145-156.

[本文引用: 3]

Haeberli W.

Mountain permafrost: research frontiers and a special long-term challenge

[J]. Cold Regions Science and Technology, 20139671-76.

[本文引用: 1]

Dramis FGovi MGuglielmin Met al.

Mountain permafrost and slope instability in the Italian Alps: the Val Pola landslide

[J]. Permafrost and Periglacial Processes, 199561): 73-81.

[本文引用: 1]

Haeberli WHuggel CKääb Aet al.

Permafrost conditions in the starting zone of the Kolka-Karmadon rock/ice slide of 20 September 2002 in North Osetia (Russian Caucasus)

[C]// Extended Abstracts of the 8th International Conference on Permafrost. Zürich, SwitzerlandInternational Permafrost Association200349-50.

Kellerer-Pirklbauer ALieb G KAvian Met al.

Climate change and rock fall events in high mountain areas: numerous and extensive rock falls in 2007 at Mittlerer Burgstall, central Austria

[J]. Geografiska Annaler Series A: Physical Geography, 2012941): 59-78.

[本文引用: 1]

Hoelzle MMittaz CEtzelmüller Bet al.

Surface energy fluxes and distribution models of permafrost in European mountain areas: an overview of current developments

[J]. Permafrost and Periglacial Processes, 2001121): 53-68.

[本文引用: 1]

Wegmann MGudmundsson GHaeberli W.

Permafrost changes and the retreat of Alpine glaciers: a thermal modelling approach

[J]. Permafrost and Periglacial Processes, 1998923-33.

[本文引用: 1]

Allen S KCox S COwens I F.

Rock avalanches and other landslides in the central Southern Alps of New Zealand: a regional study considering possible climate change impacts

[J]. Landslides, 201081): 33-48.

[本文引用: 1]

Allen SHuggel C.

Extremely warm temperatures as a potential cause of recent high mountain rockfall

[J]. Global Planetary Change, 201310759-69.

[本文引用: 1]

Yongbo TieLi Zongliang.

Formation mechanism of moraine supplied-rainstorm debris flow in Moxi basin

[J]. Bulletin of Soil and Water Conservation, 2011314): 195-199.

[本文引用: 1]

铁永波李宗亮.

磨西河流域冰碛补给-暴雨型泥石流形成机制研究

[J]. 水土保持通报, 2011314): 195-199.

[本文引用: 1]

Yongbo TieXu RugeBa Renji.

Source supply process and mechanisms of moraine-supplied debris flow: take Gangou valley in Luding County as an example

[J]. Bulletin of Soil and Water Conservation, 2013331): 77-80.

[本文引用: 1]

铁永波徐如阁巴仁基

典型冰碛补给型泥石流物源补给过程与机制研究: 以泸定县干沟为例

[J]. 水土保持通报, 2013331): 77-80.

[本文引用: 1]

Pan LeiWei XueliZhang Yuanfanget al.

Influence of initial water content on glacial debris flow triggering process

[J]. Journal of Soil and Water Conservation, 2017316): 116-122.

[本文引用: 1]

潘蕾魏学利张远芳.

初始含水率对冰川泥石流的起动影响分析

[J]. 水土保持学报, 2017316): 116-122.

[本文引用: 1]

Jiang DewangCui PengWang Jiaoet al.

Experimental study on the effect of shear strength of moraine soil with fine grain content

[J]. Journal of Glaciology and Geocryology, 2019411): 129-139.

[本文引用: 1]

蒋德旺崔鹏王姣.

细粒含量对冰碛土抗剪强度影响的实验研究

[J]. 冰川冻土, 2019411): 129-139.

[本文引用: 1]

Iverson R M.

Scaling and design of landslide and debris-flow experiments

[J]. Geomorphology, 20152449-20.

[本文引用: 1]

Mcardell B WBartelt PKowalski J.

Field observations of basal forces and fluid pore pressure in a debris flow

[J/OL]. Geophysical Research Letters, 2007342021-04-06]. .

[本文引用: 1]

Mccoy S WKean J WCoe J Aet al.

Evolution of a natural debris flow: in situ measurements of flow dynamics, video imagery, and terrestrial laser scanning

[J]. Geology, 201038735-738.

Berger CMcardell B WSchlunegger F.

Direct measurement of channel erosion by debris flows, Illgraben, Switzerland

[J/OL]. Journal of Geophysical Research, 20111162021-04-06]. .

Comiti FMarchi LMacconi Pet al.

A new monitoring station for debris flows in the European Alps: first observations in the Gadria basin

[J]. Natural Hazards, 2014731175-1198.

Cui PGuo X JYan Yet al.

Real-time observation of an active debris flow watershed in the Wenchuan Earthquake area

[J]. Geomorphology, 2018321153-166.

Hürlimann MCoviello VBel Cet al.

Debris-flow monitoring and warning: review and examples

[J/OL]. Earth-Science Reviews, 20191992021-04-06]. .

[本文引用: 1]

/