冰川冻土, 2022, 44(4): 1382-1394 doi: 10.7522/j.issn.1000-0240.2022.0124

第四纪与行星冰冻圈

丽江干河坝冰-岩碎屑流地貌、沉积特征与成因机制分析

师璐璐,1, 陈剑,1, 陈瑞琛1, 崔之久2, 米东东1, 吕明升1, 刘蓓蓓3

1.中国地质大学(北京) 工程技术学院, 北京 100083

2.北京大学 城市与环境学院, 北京 100871

3.应急管理部国家减灾中心, 北京 100124

Geomorphological characteristics and failure mechanism of Ganheba rock-ice avalanche in Lijiang

SHI Lulu,1, CHEN Jian,1, CHEN Ruichen1, CUI Zhijiu2, MI Dongdong1, LÜ Mingsheng1, LIU Beibei3

1.School of Engineering and Technology,China University of Geosciences,Beijing 100083,China

2.College of Urban and Environmental Science,Peking University,Beijing 100871,China

3.Ministry of Emergency Management,National Disaster Reduction Center of China,Beijing 100124,China

通讯作者: 陈剑,教授,主要从事灾害地貌学、工程地质和地质灾害防治研究. E-mail: jianchen@cugb.edu.cn

收稿日期: 2022-05-31   修回日期: 2022-08-13  

基金资助: 国家自然科学基金项目.  41571012
国家重点研发计划项目.  2018YFC1508806.  2018YFC1505003

Received: 2022-05-31   Revised: 2022-08-13  

作者简介 About authors

师璐璐,硕士研究生,主要从事工程地质与地质灾害防治研究.E-mail:2002200022@cugb.edu.cn , E-mail:2002200022@cugb.edu.cn

摘要

2004年3月12日,云南省丽江市玉龙雪山南坡发生了较大规模的冰-岩碎屑流型高速远程滑坡。位于斜坡顶部(高程为4 337~5 350 m)的岩体和冰川块体沿着高陡岩壁向下滑动,在峡谷地形控制下于干河坝内形成体积约11.2×106 m3的滑坡堆积体。本文通过遥感影像分析和现场调查,对干河坝冰-岩碎屑流的地貌与堆积特征进行了详细研究,初步阐释了干河坝冰-岩碎屑流发生的成因机制和运动过程。研究结果表明,节理裂隙发育、源区冻融作用加剧和历史地震效应是此次地震的诱发因素。地形的坡度变化特征、滑体表面“乘船石”结构及内部岩屑的定向排列表明滑坡的运动过程可分为碰撞破碎阶段和扩散堆积阶段。滑坡堆积区广泛分布的“冰川乳坑”和冰水沉积物暗示堆积体底部松散沉积物减阻或是干河坝冰-岩碎屑流具有远程效应的有利因素。深入理解干河坝冰-岩碎屑流的地貌特征及运动学过程,对揭示高速远程滑坡的超强运动机理具有重要的理论意义,同时对我国西部高寒山区大型滑坡灾害的预测预警亦具有现实意义。

关键词: 干河坝冰-岩碎屑流 ; 地貌特征 ; 成因机制 ; 冻融作用 ; 玉龙雪山

Abstract

On March 12, 2004, a large-scale rock-ice avalanche occurred on the south side of Yulong Snow Mountain in Lijiang, Yunnan Province. The slide body consists of the upper ice mass and the lower rock mass, with a total volume of 9.1×106 m3. The maximum high drop of the landslide is 1 971 m, the longest movement distance is 4 860 m, and the apparent friction coefficient (H/L) is 0.40. The rock-ice avalanche with the volume of 11.2×106 m3 and the movement length of 3 170 m developed in Ganheba. This paper presents a detailed study of topographic and geomorphological characteristics through remote sensing images and field investigation.The lithology of the study area consists mainly of limestone with two sets of structural faces. Although seismic activity data indicate that the occurrence of the Ganheba rock-ice avalanche is not directly related to earthquakes. The Yulong Snow Mountain is tectonically active, and historical earthquakes likely caused structural damage to bedrock along the joint surface in the source area. Besides, the temperature in the Lijiang area showed an increasing trend from 1951 to 2005. Yanggongjiang No. 5 Glacier near the study area decreased dramatically. The long-term freeze-thaw cycling is likely to aggravate the rock damage in the source area. Therefore, the triggering factors of the Ganheba rock-ice avalanche are highly fractured limestone, freeze-thaw cycle, and historical seismicity.According to the topographic and geomorphological characteristics, the Ganheba rock-ice avalanche can be divided into three zones: the source area, the circulation zone, and the accumulation zone. The slope in the source area is significantly steep, and the average slope angle is 48°. There are two groups of structural planes developed in the bedrock. A small number of debris remains at the platform in the circulation zone. The ice mass is mainly distributed in the accumulation area III-1, while the surface of the accumulation area III-2 is widely distributed with glacial milk pits and a unique “boat rock” structure. The directional arrangement of boulders can also be observed in this section. The movement process of landslides can be divided into two stages: the pre-collisional fragmentation stage and the post-spreading accumulation stage. In the first stage, the destabilized rock body is violently broken by a high-speed impact on the platform. In the second stage, the debris flow moves as a flexible sheet with all displacement taking place in the fluvioglacial deposit and the inter-particle fragmentation is not significant.Based on the above analysis, we believe that the emplacement process of the Ganheba rock-ice avalanche is as follows: (1) The bedrock joint of the permafrost area tended to expand under the freezing and thawing cycle. Until March 2003, glacial snowmelt water in the fissure led to a decrease in basal friction and the effective stress in the bedrock, which eventually caused sliding damage along the structural surface of the limestone. (2) The overlying ice mass and underlying rock mass formed a double-layer sliding structure. They collided with platform at the circulation area, and was significantly broken under the control of the structural surface of the bedrock. (3) The ice mass stopped in the accumulation area III-1 and formed several arcuate lateral ridges within a few years. Constrained by the topography, the debris flow in the accumulation zone III-2 first extends toward SE120°, and then turns to NE85° with the valley shape. (4) After the valley turns, the velocity of the debris flow drops abruptly and the thickness of the deposit gradually becomes thinner, forming a unique “boat rock” structure.An in-depth study of the geomorphic features and kinematic processes of the Ganheba rock-ice avalanche is of great significance to revealing the kinematic mechanism of high-speed remote landslides. It is also of importance to the prediction and early warning of large-scale landslide disasters in alpine mountains of western China.

Keywords: Ganheba rock-ice avalanche ; geomorphological features ; failure mechanism ; freezing and thawing effect ; Yulong Snow Mountain

PDF (12599KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

师璐璐, 陈剑, 陈瑞琛, 崔之久, 米东东, 吕明升, 刘蓓蓓. 丽江干河坝冰-岩碎屑流地貌、沉积特征与成因机制分析[J]. 冰川冻土, 2022, 44(4): 1382-1394 doi:10.7522/j.issn.1000-0240.2022.0124

SHI Lulu, CHEN Jian, CHEN Ruichen, CUI Zhijiu, MI Dongdong, LÜ Mingsheng, LIU Beibei. Geomorphological characteristics and failure mechanism of Ganheba rock-ice avalanche in Lijiang[J]. Journal of Glaciology and Geocryology, 2022, 44(4): 1382-1394 doi:10.7522/j.issn.1000-0240.2022.0124

0 引言

在气候变暖、冰川退缩的影响下,高海拔区域的滑坡受冻融作用的控制发育愈加频繁1-3。冰-岩碎屑流是一种在启动或运动时裹挟冰屑(冰、雪、粒雪等)的特殊高速远程滑坡,是高寒山区陡峭山体斜坡区冰崩、岩崩或滑坡解体后形成的冰屑、岩块和土颗粒混合体高速流动的现象4-6。虽然多数冰-岩碎屑流发育于人迹罕至的高海拔地区,但其潜在的堵江风险及灾害链效应可能会造成巨大的经济损失和人员伤亡7-9

高速远程滑坡相比于一般滑坡体积更大、运动速度更快、运动距离更远,并具有预测难、风险大的特点10-12,而冰-岩碎屑流一般展现出更低的等效摩擦系数和更远的运动距离613-15。近年来,在全球范围内,许多针对冰-岩碎屑流沉积学和运动学的研究正在进行。Hewitt16-17指出了冰-岩碎屑流呈现出堆积体厚度较薄,多呈叶状或者舌状的特点,并广泛发育着丘体、纵向脊、横向脊、流带等堆积地貌特征。杨情情等5在易贡滑坡堆积体前端发现有因冰屑融化形成的深0.5~4.5 m的坑洞;Deline18在Miage冰-岩碎屑流堆积体中观察到不规则的隆起洼地(irregular hills and depressions);Sosio等1419则在Thurwieser冰-岩碎屑流堆积体前端3~4 km处发现由细粒物质组成的薄层粉末(thin layers of dust)。这些研究表明了冰-岩碎屑流与其他高速远程滑坡相比既存在共性,也存在差异。Schneider等4指出,相比普通高速远程滑坡,冰-岩碎屑流的运动特性显著受到了冰水含量的影响。不少学者通过室内试验和数值模拟的方式研究含冰量、下伏层冰川和冰融水对冰-岩混合材料运动性的影响机理,目前主要有以下几种观点:(1)冰川地区下伏层摩擦力较小,比岩层更易铲刮,碎屑物质在其上运动时运动性更强19-21。(2)碎屑流中的冰雪物质可减少岩体碎屑之间的内部摩擦耗能22-23;(3)碎屑流基底冰屑物质因摩擦加热导致基底物质饱和,降低了流动阻力24-26。正是由于冰-岩碎屑流在形成过程中存在着固体(岩石和冰)和液体(水、雪、泥浆和细颗粒)的动态相互作用,使得冰-岩碎屑流滑坡的运动过程和堆积结构更加复杂27-28

杨情情等6在梳理全球冰-岩碎屑流灾害分布时,指出了喜马拉雅-喀喇昆仑山脉灾难性冰-岩碎屑流频发。然而,当前国内关于冰-岩碎屑流的案例研究还很少29-30。2004年3月12日,云南省丽江市玉龙雪山南坡发生了剧烈的冰-岩崩塌-碎屑流20。玉龙雪山地处青藏高原最南端的海洋型冰川区,该区冰-岩碎屑流的发育对我国气候变化下冰川灾害链的研究具有重要意义。此外,玉龙雪山为我国国家级风景名胜区,日游客接待量最高可达5万余人,若冰-岩碎屑流再次发生,很可能会威胁该区游客的生命安全,并迅速改造当地地貌环境18,影响该地区的水循环过程,进而影响当地的经济发展31。崔之久于2007年4月8日对干河坝滑坡进行过初步调查32,研究团队于2021年4月27日开展了进一步详细的野外调查工作,判断此事件为冰-岩碎屑流滑坡。本文将通过遥感影像分析、野外调查等手段,研究干河坝冰-岩碎屑流的地貌与堆积特征,反演其运动学过程,在此基础上探讨其超强运动机理,以期进一步加深对冰-岩碎屑流滑坡运动特征的认识,为玉龙雪山乃至青藏高原其他地区类似灾害的预测与防控提供科学依据。

1 数据来源与方法

本文收集了2004—2021年4个类型7个时相的卫星数据作为遥感信息源,其图像特征及接受时段如表1所示。滑坡遥感影像解译能够为滑坡区范围的确定提供依据,并提供一定量的地表特征信息,尤其是源区的特征信息。12.5 m的DEM数据(ALOS)用来评估沟谷和坡面形态。厘米级的GPS和测距仪等工具用来进一步确定研究区的地貌特征。

表1   干河坝冰-岩碎屑流卫星遥感监测数据特征

Table 1  Characteristics of remote sensing data for monitoring Ganheba rock-ice avalanche

卫星影像来源图像特征接收时间
Landsat5经多波段合成分辨率约30 m的标准假彩色图像2004-01-04;2005-04-12
Google Earth分辨率约1.0 m2005-06-03;2013-11-01;2018-10-23
Esri World Image分辨率约2.5 m2020-11-18
ALOS DEM分辨率约12.5 m2007-06-18

新窗口打开| 下载CSV


2 研究区概况

玉龙雪山地处青藏高原东南缘,位于云南省丽江市玉龙纳西族自治区,山体走向大致为NNW—SSE,南北蜿蜒约35 km,东西纵横13 km左右33。干河坝冰-岩碎屑流位于玉龙雪山主峰扇子陡(海拔5 596 m)南侧斜坡地带(27°4′32″~27°5′53″ N,100°10′52″~100°12′38″ E)。滑坡区东侧分布有玉龙雪山东麓断裂,为一大型正断层,是丽江地区距今最近一次地震(1996年丽江地震)的主控震构造(图134

图1

图1   研究区概况

图例说明:1. 泥盆纪-早二叠世灰岩; 2. 现代冰川; 3. 末次冰期以来的冰碛-冰水沉积物; 4. 末次冰期前冰碛-冰水沉积物; 5. 晚二叠世-三叠纪火山-沉积地层; 6. 活动正断层; 7. 干河坝冰-岩碎屑流。改自吴中海等39,2008

Fig. 1   General situation of the study area

Legend: 1. Devonian-Early Permian strata; 2. modern glaciers;3. glacial deposits of last ice age; 4. glacial deposits of pre-last ice age; 5. Late Permian-Triassic strata; 6. faults; 7. Ganheba rock-ice avalanche. Adapted from Wu et al39, 2008


玉龙雪山在纬度上处于亚热带区域,干湿季明显,11月至次年4月为干季,主要受西风环流南支和高原冬季风控制;5—10月为雨季,主要受控于西南与东南季风,降水丰沛35。自1951至2005年丽江地区气温呈明显上升趋势,其中干季增温显著,高海拔地区增温较低海拔地区显著;虽然湿季降水百分率在85%~99%之间,但年降水量随海拔高度的升高而减少36。在这样的背景下玉龙雪山的冰川正发生快速变化,具体表现为冰川消融量增加、冰舌位置后退、冰川面积减小、雪线上升等特征37

滑坡区东侧为玉龙雪山末次冰期(大理冰期)期间所形成的侧碛和终碛垄,高100 m左右33,分布于干河坝两侧。干河坝整体呈SE向展布,坝内靠近山体部分为一冰川峡谷,谷形曲折,先向南南东方向延伸约1 500 m,后又向东折延约2 000 m,谷内地形西高东低38。峡谷两侧陡壁坡度50°~80°,海拔高度约4 000~5 000 m,主要由石炭系和泥盆系的厚层状灰岩组成,呈灰色或深灰色。在寒冻风化作用下,研究区内灰岩风化程度较高,在峡谷两侧发育有大量倒石锥,倒石锥附近灰岩高度破碎。本文所研究冰-岩碎屑流堆积物分布于峡谷内(图1中红色区域)。

3 干河坝滑坡基本特点及地貌分区

3.1 滑坡形态特征

2004年1月4日影像显示山体中部缓坡平台处有冰雪覆盖,峡谷两侧有植被发育,谷底中部有一冰融水形成的溪流穿过[图2(a)]。与周围山体及滑前影像对比,2005年4月12日影像较清晰地显示出滑坡形态,其中红色虚线所示区域变化较为明显,推测为滑源区。峡谷底部靠近山体两侧的植被被滑体完全覆盖,推测为堆积区。谷内堆积体呈舌状分布,并随谷形发生转折[图2(b)]。

图2

图2   干河坝冰-岩碎屑流历史卫星影像

Fig. 2   Historical satellite images of Ganheba rock-ice avalanche: January 4, 2004 (a); April 12, 2005 (b)


根据滑坡前后光学遥感影像的解译、地形变化及滑坡区堆积体的分布情况,将滑坡区分为滑源区(Ⅰ区)、流通区(Ⅱ区)和堆积区(Ⅲ区)三个部分[图3(a)]。失稳岩体自源区下落向SE156°方向滑动,经过流通区后,部分碎屑流堆积于坡脚,其余则先向SE120°方向延伸,而后随谷形转至NE85°,形成平面形态呈长舌形的堆积区[图3(b)]。

图3

图3   干河坝冰-岩碎屑流分区图

Fig. 3   The zoning map of Ganheba rock-ice avalanche: Esri satellite image on Nov. 18, 2020 (a); longitudinal profile (P-P’) (b)


3.2 滑源区

滑源区(Ⅰ区)位于斜坡顶部,滑坡后壁顶部高程约5 350 m;剪出口高程约4 337 m;整个滑源区边界范围投影面积约0.26 km2

滑坡发生后在源区后部形成了一处高差约1 013 m的基岩后壁,壁面产状为156°∠48°(图4)。受地形限制,本研究并未对源区结构面产状进行实测,但玉龙雪山主体部分由几个强烈的直立褶皱组成,滑坡源区附近发育有一组近于直立的剪节理40-41。基于2005年卫星影像中源区基岩结构面发育情况(图4黄色虚线)与峡谷南北两侧灰岩结构面产状(111°∠75°;300°∠89°),推测斜坡上部为陡倾和顺向结构面组合。

图4

图4   2013年11月1日滑源区Google Earth影像图

Fig.4   Google Earth image of the source area on November 1, 2013


滑源区西侧为冰川“U”形谷,部分冰川块体随滑源区岩体共同下滑后形成冰川断面。源区内部有一未滑岩体突出于岩壁,壁面整体呈灰色,局部区域呈现出淡黄色,推测为风化结构面。岩壁凸出的基岩块体长约400 m,宽约192 m,平均厚度约35 m,由此推算源区滑体中灰岩块体体积约9.1×106 m3图4)。

3.3 流通区

流通区(Ⅱ区)主要分布在高程3 920~4 337 m之间。其中部发育有一长约40 m,上表面坡度约18°的缓坡平台。该平台将流通区分为三部分,平台向上至滑源区底部坡度约40°,长约260 m。平台向下坡度约26°,长410 m。该平台形成了崩塌块体下滑过程中的缓冲区(图3)。据前人研究,2006年,该平台处可观察到残留冰体40;2007年,该处仍可见饱含岩石碎屑的冰体32;2021年时,平台处只可观察到一小部分岩石碎屑。流通区中下部表面光滑,为历史冰川活动形成的磨光面[图3(a)]。

3.4 堆积区

堆积区(Ⅲ区)长约2 860 m,海拔高度位于3 379 m至3 712 m之间,可分为Ⅲ-1区和Ⅲ-2区[图3(a)]。二者堆积体厚度具有明显差异,这与Blanc冰-岩碎屑流和Frebouge冰-岩碎屑流表现出的局部堆积体富集的特征相似1842

堆积区Ⅲ-1位于坡脚,总面积约0.092 km2,平均坡度约22°,平均厚度约35 m,平面形态为扇形,其上分布有冰体[图5(a)]。该处冰体现已消融,其余堆积体在滑坡发生后十余年间不断扩张变形[图5(b)],形成数条明显的弧形横向脊[图3(a),图5(c)],这种缓慢扩张形式和Sherman冰-岩碎屑流滑坡相似43

图5

图5   堆积区Google Earth影像图

Fig.5   Google Earth image of accumulation area: June 3, 2005 (a); November 1, 2013 (b); October 23, 2018 (c)


堆积区Ⅲ-2为堆积区Ⅲ-1末端至堆积体前缘,总面积约0.89 km2,平均坡度约10°,前后高差约385 m,呈长舌状。对比多年卫星影像,Ⅲ-2区堆积体没有扩展迹象。由于两侧山谷限制,堆积体在山谷转折处形成爬高后不断变薄停积于谷中。通过现场考察,堆积区Ⅲ-2末端堆积体厚度最薄,约5 m左右,推测堆积区Ⅲ-2的平均厚度约为10 m。

根据以上调查,最终计算各区几何参数如表2所示。滑坡最大高差约1 971 m。最长水平距离约4 860 m,H/L约为0.4。滑源区崩塌块体体积约为9.1×106m3,堆积区碎屑流体积约为11.2×106m3,堆积区碎屑流体积比源区滑体体积多23.07%,这与Hungr等44所提出的岩体破碎会使堆积体体积增加25%的结果基本一致。

表2   干河坝冰-岩碎屑流各分区几何参数

Table 2  Geometric parameters in each region caused by Ganheba rock-ice avalanche

面积/km2前后高差/km运动距离/km平均厚度/m体积/km3
源区0.26001.0130.878350.0091
流通区0.22500.4170.812
堆积区Ⅲ-10.09250.2080.460350.0032
Ⅲ-20.79770.3332.710100.0080
整体0.89020.54131700.0112

新窗口打开| 下载CSV


4 干河坝滑坡的堆积结构

4.1 堆积区表面特征

滑坡发生后堆积区Ⅲ-1表面分布有大量巨型冰块,粒径约为2~3 m[图6(a)]。堆积区Ⅲ-2表面分布有巨型块石,粒径大多约为1~2 m,最大直径可达12 m[图6(b)],前缘部分块石被掩埋于地表以下[图6(c)]。岩性为灰岩,岩块棱角分明无分选。

图6

图6   堆积区表面特征

Fig.6   Topography features of the accumulation zone: ice mass in accumulation zone III-1, cited by Cui Zhijiu, 201332 (a); boulders in accumulation zone III-2 (b); distribution characteristics of the blocks at the front edge of the accumulation area III-2 (c); trees at the lateral edges of the deposit (d)


超前气浪作为大型滑坡的重要特征,近年来得到了大量研究。干河坝滑坡海拔3 800 m的西侧崖壁上直径达到20~25 cm的树木全被“剃光头”32。与树木拦腰折断不同,堆积区Ⅲ-2侧边缘可观察到沿根部倾倒、折断的树木,而距离堆积体稍远位置的树木则保存完好,这些树木分布于随谷形转折后的堆积体两侧(距堆积体前缘约700 m处)[图6(d)]。因此,推测堆积体运动至此处速度变慢,灰岩块石在惯性作用下将两侧树木沿根部推倒,而远侧树木则未受到影响。

值得注意的是,干河坝冰-岩碎屑流堆积区内可观察到大大小小的“冰川乳坑”,坑内物质呈白色乳状,最大深度超过20 cm[图7(a)]。干河坝冰-岩碎屑流发生后,在距堆积体前缘4 km左右的侧碛垄内逐年形成大片白色粉状物质,出露面积约0.1 km2,主要由碳酸钙细粒物质组成[图7(b)]。滑坡发生后,冰川融水将堆积区内细粒物质搬运至此汇集而成,这从侧面表明滑坡区细粒物质含量丰富。

图7

图7   堆积区冰水沉积物

Fig. 7   Fluvioglacial deposit in the accumulation zone: “glacial milk pit” (a); accumulation of fine-grained material (b)


4.2 堆积区内部结构特征

受冰川融水的侵蚀,堆积区内出露滑坡堆积剖面(图8)。高速远程滑坡堆积体在竖向上主要呈现出三种相带:堆积体上部的硬壳层(carapace facies)、中部的主体层(body facies)以及下部的基底层(basal facies)。硬壳层为堆积体剖面上最靠近顶端大块石富集的相带11。干河坝冰-岩碎屑流堆积区Ⅲ-2硬壳层主要由大块石组成[图8(a)]。其中,大多数巨石上表面“驮着”小石块(0.5~1 m)和细粒碎屑。该碎屑层主要由1~5 cm的灰岩碎石颗粒组成,呈棱角-次棱角状,崔之久32称这种结构为“乘船石”[图8(b)]。该结构与在Blanc冰-岩碎屑流及Lamplugh冰-岩碎屑流堆积体中观察到一种小粒径颗粒“栖息”于巨型块石之上的结构十分相似1845

图8

图8   干河坝冰-岩碎屑流堆积地貌

Fig. 8   Accumulation profile of Ganheba rock-ice avalanche: vertical distribution characteristics of the accumulation zone (a); the structure of the “boat rock” (b); body faces (c); directional alignment of gravels (d)


主体层是高速远程滑坡碎屑堆积的主要分布层位11。干河坝冰-岩碎屑流堆积区Ⅲ-2主体层多由2~5 cm的砾石组成,局部可见30~100 cm的块石,偶尔可观察到粒径大于1 m的巨石,基质主要由细粒(<0.075 mm)组成,呈灰白色[图8(a), 8(c)]。除此外,平行于堆积体运动方向的堆积剖面上还可观察到部分块石的长轴延伸方向明显平行于运动方向[图8(c)],局部还可以观察到块石的微倾斜状定向排列[图8(d)]。

5 干河坝冰-岩碎屑流斜坡失稳的成因分析

5.1 历史地震作用

地震作用会导致岩体内部裂缝增加,岩体内裂缝可能会促进冻融循环等物理风化过程,尤其陡坡因地形放大效应会受到更大的影响46-47。因此,受到地震影响的边坡可能长期处于临界失稳状态,在地震后数月或是数年才会发生破坏,如1987年Parraguirre滑坡与2002年Kolka-Karmadon滑坡48-49。据统计,20世纪以来,云南境内记录到5级以上的地震377次,其中7级以上地震13次,震源深度大都在9~24 km50。其中距源区最近的一次地震为1996年丽江地震,震级为7级,震源深度为10 km,宏观震中位置距该滑坡区约7 km,共诱发了至少420处中小型崩塌和30处大中型滑坡51。干河坝冰-岩碎屑流源区位于玉龙雪山主峰山脊处,坡度较陡(约48°)。因此,虽然地震活动数据表明干河坝滑坡的发生与地震并无直接关系,但玉龙雪山地区构造运动活跃(图9),历史地震很可能导致滑源区岩层沿节理面发生结构性破坏,促使边坡处于临界失稳状态。

图9

图9   玉龙雪山地区历史地震分布情况,引自尹功明等52,2017

Fig.9   Historical earthquake distribution at Yulong Snow Mountain, adapted from Yin Gongming et al52, 2017


5.2 冻融作用

近年来大量研究表明,气候变暖背景下多年冻土区崩滑灾害频发。冻土退化与冻融作用加剧很可能促进了高寒山区斜坡失稳发育1-253。从1957年至2001年,漾弓江5号冰川面积由0.72 km2骤减至0.052 km23554。干河坝冰-岩碎屑流源区位于该冰川附近多年冻土区,滑坡发生前丽江地区温度呈上升趋势,滑坡发生后岩壁表面有残留冰体存在,这与Haeberli概括的多年冻土退化导致基岩失稳的特征相一致55

冻融作用导致的斜坡失稳系含冰节理发育所致。每年春夏至秋初,由于气温升高,冻土区冰体消融,冰融水渗入基岩节理裂隙中导致裂隙发生扩张55-56,岩石强度降低。而且冰川融水对玉龙雪山地区灰岩的溶蚀作用进一步加剧了岩石损伤40。因此,在长年累月反复作用下,源区基岩的节理裂缝不断扩大。直至2003年春季,基岩裂隙内冰体强烈消融既降低了冰体与岩体之间的摩擦力57,也因此产生静水压力降低了基岩的有效应力55,最终导致源区基岩沿节理裂隙面产生滑动,形成干河坝冰-岩碎屑流。

6 干河坝冰-岩碎屑流的运动学过程分析

Storm等58以中亚地区433个高速远程滑坡为例,根据地形条件的不同将其分为正向受限型(Frontally confined)、侧向受限型(Laterally confined)和非约束型(Unconfined)三类,分别建立了影响面积(滑坡区总面积Atotal和堆积区面积Adep)与滑体体积(V)、高差(Hmax)之间的回归方程。此外,Sosio等19以42个地区的冰-岩碎屑流为例,建立了滑体体积(V)与堆积区面积(A)的公式(表3)。作为一种侧向受限型冰-岩碎屑流,将干河坝滑坡的滑体体积(V=0.0091 km3)与高差(Hmax=1.971 km)代入表3的拟合公式中可得到其影响面积的计算值。通过对比可知其计算值均大于实测值,这说明与相同体积、类似高差的高速远程滑坡相比,干河坝冰-岩碎屑流的影响面积偏小。由此可知,干河坝冰-岩碎屑流的运动性相对较弱,本文认为这与干河坝滑坡区特殊的地形条件有关。

表3   干河坝冰-岩碎屑流几何参数的评估

Table 3  Regression equations and evaluations of the parameters of the Ganheba rock-ice avalanche

计算公式拟合度实测值计算值文献来源
Atotal=101.0884VHmax0.54970.9271.32 km21.34 km2Storm et al, 201958
Adep=100.9748VHmax0.57450.9150.89 km21.06 km2
V=2.60A0.860.740.89 km25.46 km2Sosio et al, 201219

新窗口打开| 下载CSV


首先,源区灰岩节理裂隙发育,滑体运动至缓坡平台时,与下伏基岩发生剧烈撞击,颗粒与颗粒之间内部剪切和碰撞剧烈。根据Manzella等59-60,与完整滑体相比,高度破碎的失稳岩体在运动过程中因内部剪切和碰撞耗能,进入堆积区时速度较小。因此,推测干河坝冰-岩碎屑流滑体与流通区的缓坡平台在撞击过程中耗散了大量能量,降低了堆积区碎屑流的初始运动速度。

其次,干河坝冰-岩碎屑流在运动过程中经历了多次转向,其运动至谷形转折处(据前缘约910 m)时在南侧斜坡形成88 m的爬高(图10)。根据爬高计算公式(1)61,估计碎屑流在此处的运动速度高达29.9 m·s-1。而根据峡谷转折后堆积体两侧沿根部倾倒的树木可知,滑坡物质运动到此处(距前缘约710 m)时速度已相对较小。据胡晓波等62的研究,滑坡前缘在沟道地形偏转位置运动方向发生变化,会导致运动速度突降,造成动能耗散。因此,堆积区沟道偏转地形使滑坡减速变得更加剧烈。

v=(Rchg/kB)1/2

式中:曲率半径Rc为368 m,两侧高差h为88 m;沟道坡度修正系数k为1,沟道宽度B为355 m。

图10

图10   峡谷转折处爬高

Fig. 10   The superelevation in bend: plane of the superelevation (a); profile of the superelevation (b)


与碰撞破碎阶段的运动形式不同,本文认为干河坝冰-岩碎屑流在堆积区以剪切运动模式为主。堆积区Ⅲ-2剖面中可观察到局部灰岩块石存在水平定向排列现象,这说明碎屑流在堆积区Ⅲ-2运动过程中滑体内部扰动性较弱,主要以水平层流运动为主。堆积区Ⅲ-2前缘被部分埋藏于地表以下的巨石及独特的“乘船石”结构也表明了滑坡体扩展变薄的运动过程。除此外,根据第3节滑坡前后遥感影像的解译可知,滑坡前流通区平台覆盖有冰雪物质且堆积区内冰融水十分丰富。通过实地考察发现堆积区广泛分布有“冰川乳坑”和冰雪融水。根据Imre等63的研究,当基底摩擦较小时,碎屑流内部物质不容易发生破碎,其破碎能量消耗也较少。因此,本文推测失稳岩体在流通区裹挟有冰雪物质,且堆积区的饱和冰水沉积物导致堆积体基底摩擦较小。干河坝冰-岩碎屑流在底部冰水沉积物的作用下主要发生整体性剪切作用,颗粒间破碎作用并不显著。

基于上述分析,本文重建了干河坝冰-岩碎屑流的运动学过程(图11)。

图11

图11   干河坝冰-岩碎屑流运动过程示意图

Fig. 11   Schematic diagram of the movement process of Ganheba rock-ice avalanche: slope instability (a); fragmentation (b); ice mass accumulation at the foot of the slope (c); the deposits spread foward and get thinner (d)


(1)玉龙雪山基岩节理面内冰融水在冻融循环作用下导致基岩裂隙不断扩大,岩体稳定性降低。直至2004年春季,裂隙内冰体融化导致冰体与底部岩体间摩擦力降低,基岩有效应力降低,最终造成冻融区灰岩沿结构面发生滑动破坏。

(2)不稳定岩块脱离基岩后,促使“U”形谷冰川发生断裂下滑,进而形成上覆冰层下伏岩层的双层滑动结构。滑体高速下滑与流通区处缓坡平台相撞,在岩体结构面控制作用下发生显著破碎,随后铲刮流通区冰屑物质,形成冰-岩碎屑流混合体。

(3)双层滑动体中的上覆冰体停积于坡脚,在堆积区Ⅲ-1形成巨型冰体。由于两侧峡谷限制,其余冰-岩碎屑流则在冰水沉积物作用下继续向谷口运动。

(4)干河坝冰-岩碎屑流进入峡谷后以剪切运动模式向前扩展,随谷形转折后碎屑流速度骤降,堆积体厚度逐渐变薄最终停于谷中,形成独特的“乘船石”结构。

7 结论

(1)2004年,玉龙雪山南侧斜坡失稳。滑体由上层冰体与下层灰岩岩体组成,总体积达9.1×106 m3。滑体脱离陡坡向下滑动至坡脚进入峡谷,而后随谷形发生转折停积于谷中。滑坡最大高差约1 971 m,最长水平距离距离约4 860 m,表观摩擦系数(H/L)为0.4。

(2)根据干河坝碎屑流滑坡区地形地貌特征,可将其分为滑源区、流通区和堆积区三部分。其中堆积区平面形态呈长舌形,总体积约11.2×106m3。堆积区Ⅲ-1上部分布有巨型冰块,在后续十余年间该区堆积体变形扩展形成数条弧形横向脊。堆积区Ⅲ-2表面广泛发育有独特的“乘船石”结构,剖面局部可观察到块石具明显定向排列结构。

(3)在历史地震作用和长期冻融循环作用下,冻土区基岩节理裂隙不断扩大,最终导致干河坝冰-岩碎屑流源区基岩沿节理面发生滑动破坏。滑体与流通区缓坡平台碰撞后铲刮底部冰雪物质形成冰-岩碎屑流,在沟谷冰水沉积物的减阻作用下,碎屑流随谷形转折后扩展变薄,最后停积于谷中。

(4)根据干河坝冰-岩碎屑流地形地貌特征,堆积结构特征及运动特性,其运动过程可分为碰撞破碎阶段和扩散堆积阶段,其远程效应主要是由冰-岩碎屑流的层间剪切作用和下伏层冰水沉积物减阻作用所致。

参考文献

Coe J ABessette-Kirton E KGeertsema M.

Increasing rock-avalanche size and mobility in Glacier Bay National Park and Preserve, Alaska detected from 1984 to 2016 Landsat imagery

[J]. Landslides, 2018153): 393-407.

[本文引用: 2]

Bessette-Kirton E KCoe J A.

A 36-year record of rock avalanches in the Saint Elias Mountains of Alaska, with implications for future hazards

[J]. Frontiers in Earth Science, 20208293.

[本文引用: 1]

Fan XYunus A PYang Y Het al.

Imminent threat of rock-ice avalanches in High Mountain Asia

[J]. Science of The Total Environment, 2022836155380.

[本文引用: 1]

Schneider DHuggel CHaeberli Wet al.

Unraveling driving factors for large rock-ice avalanche mobility

[J]. Earth Surface Processes and Landforms, 20113614): 1948-1966.

[本文引用: 2]

Yang QingqingSu ZhimanChen Luozenget al.

Flume these on influence of ice to mobility of rock-ice avalanche

[J]. Journal of Engineering Geology, 2015236): 1117-1126.

[本文引用: 1]

杨情情苏志满陈锣增.

冰屑对冰-岩碎屑流运动特性影响作用的初步分析

[J]. 工程地质学报, 2015236): 1117-1126.

[本文引用: 1]

Yang QingqingZheng XinyuSu Zhimanet al.

Review on rock-ice avalanches

[J]. Earth Science, 2022473): 935-949.

[本文引用: 3]

杨情情郑欣玉苏志满.

高速远程冰-岩碎屑流研究进展

[J]. 地球科学, 2022473): 935-949.

[本文引用: 3]

Zhou JCui PHao M.

Comprehensive analyses of the initiation and entrainment processes of the 2000 Yigong catastrophic landslide in Tibet, China

[J]. Landslides, 2016131): 39-54.

[本文引用: 1]

Schaub YHuggel CCochachin A.

Ice-avalanche scenario elaboration and uncertainty propagation in numerical simulation of rock-/ice-avalanche-induced impact waves at Mount Hualcán and Lake 513, Peru

[J]. Landslides, 2016136): 1445-1459.

Hu KZhang XYou Yet al.

Landslides and dammed lakes triggered by the 2017 Ms6.9 Milin earthquake in the Tsangpo gorge

[J]. Landslides, 2019165): 993-1001.

[本文引用: 1]

Cheng QiangongZhang ZhuoyuanHuang Ruiqiu.

Study on dynamics of rock avalanches state of the art report

[J]. Journal of Mountain Science, 2007251): 72-84.

[本文引用: 1]

程谦恭张倬元黄润秋.

高速远程崩滑动力学的研究现状及发展趋势

[J]. 山地学报, 2007251): 72-84.

[本文引用: 1]

Wang YufengLin QiwenLi Kunet al.

Review on rock avalanche dynamics

[J]. Journal of Earth Sciences and Enviroment, 2021431): 164-181.

[本文引用: 2]

王玉峰林棋文李坤.

高速远程滑坡动力学研究进展

[J]. 地球科学与环境学报, 2021431): 164-181.

[本文引用: 2]

Chen JianChen RuichenCui Zhijiu.

Research progress on the morphology and sedimentology of long runout landslides

[J]. Earth Science Frontiers, 2021284): 349-360.

[本文引用: 1]

陈剑陈瑞琛崔之久.

高速远程滑坡的地貌学与沉积学研究进展

[J]. 地学前缘, 2021284): 349-360.

[本文引用: 1]

Evans S G.

Catastrophic rock avalanches in glacial environments

[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1989266): 337.

[本文引用: 1]

Sosio RCrosta G BHungr O.

Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps)

[J]. Engineering Geology, 20081001): 11-26.

[本文引用: 1]

Sosio R.

Rock-snow-ice avalanches

[M]//Davies T, Rosser N, Shroder J F. Landslide hazards, risks, and disasters. 2nd ed. Elsevier, 2015199-247.

[本文引用: 1]

Hewitt K.

Catastrophic landslide deposits in the Karakoram Himalaya

[J]. Science, 19882424875): 64-67.

[本文引用: 1]

Hewitt K.

Quaternary moraines vs catastrophic rock avalanches in the Karakoram Himalaya, northern Pakistan

[J]. Quaternary Research, 1999513): 220-237.

[本文引用: 1]

Deline P.

Interactions between rock avalanches and glaciers in the Mont Blanc massif during the late Holocene

[J]. Quaternary Science Reviews, 20092811): 1070-1083.

[本文引用: 4]

Sosio RCrosta G BChen J Het al.

Modelling rock avalanche propagation onto glaciers

[J]. Quaternary Science Reviews, 20124723-40.

[本文引用: 4]

Bottino GChiarle MJoly Aet al.

Modelling rock avalanches and their relation to permafrost degradation in glacial environments

[J]. Permafrost and Periglacial Processes, 2002134): 283-288.

[本文引用: 1]

Delaney K BEvans S G.

The 1997 Mount Munday landslide (British Columbia) and the behaviour of rock avalanches on glacier surfaces

[J]. Landslides, 2014116): 1019-1036.

[本文引用: 1]

Schneider DKaitna RDietrich W Eet al.

Frictional behavior of granular gravel-ice mixtures in vertically rotating drum experiments and implications for rock-ice avalanches

[J]. Cold Regions Science and Technology, 2011691): 70-90.

[本文引用: 1]

Yang QSu ZCheng Qet al.

High mobility of rock-ice avalanches: insights from small flume tests of gravel-ice mixtures

[J]. Engineering Geology, 2019260105260.

[本文引用: 1]

De Blasio F V.

Friction and dynamics of rock avalanches travelling on glaciers

[J]. Geomorphology, 201421388-98.

[本文引用: 1]

McSaveney M J.

Sherman glacier rock avalanche, Alaska, U.S.A.

[M]//Voight B. Developments in geotechnical engineering. Elsevier1978197-258.

McSaveney M J.

Recent rockfalls and rock avalanches in Mount Cook National Park, New Zealand

[M]//Evans S G, Degraff J V. Catastrophic landslides. Geological Society of America, 200235-70.

[本文引用: 1]

Evans S GDelaney K B.

Catastrophic mass flows in the mountain glacial environment

[M]//Shroder J F, Haeberli W, Whiteman C. Snow and ice-related hazards, risks, and disasters. BostonAcademic Press2015563-606.

[本文引用: 1]

Pudasaini S PKrautblatter M.

A two-phase mechanical model for rock-ice avalanches

[J]. Journal of Geophysical Research: Earth Surface, 201411910): 2272-2290.

[本文引用: 1]

Liu Wei.

Study of the characteristics of huge scale-superi highspeed-long distance landslide chain in Yigong, Tibet

[J]. The Chinese Journal of Geological Hazard and Control, 2002313): 8-18.

[本文引用: 1]

刘伟.

西藏易贡巨型超高速远程滑坡地质灾害链特征研析

[J]. 中国地质灾害与防治学报, 2002313): 8-18.

[本文引用: 1]

Liu ChuanzhengJietang Tong Liqianget al.

Research on glacial/rock fall-landslide-debris flows in Sedongpu basin along Yarlung Zangbo River in Tibet

[J]. Geology in China, 2019462): 219-234.

[本文引用: 1]

刘传正吕杰堂童立强.

雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究

[J]. 中国地质, 2019462): 219-234.

[本文引用: 1]

Yao TandongZhang YinshengPu Jianchenet al.

Twenty-year observations of glacier hydrology and meteorology at the Tanggula pass of the Tibetan Plateau: significance and achievements

[J]. Journal of Glaciology and Geocryology, 2010326): 1152-1161.

[本文引用: 1]

姚檀栋张寅生蒲健辰.

青藏高原唐古拉山口冰川、水文和气候学观测20 a: 意义与贡献

[J]. 冰川冻土, 2010326): 1152-1161.

[本文引用: 1]

Cui Zhijiu. Diamicton and environment[M]. ShijiazhuangHebei Science and Technology Press2013.

[本文引用: 6]

崔之久. 混杂堆积与环境[M]. 石家庄河北科学技术出版社2013534-535.

[本文引用: 6]

He ZeHe YuanqingZhang Zhiganget al.

OSL dating of the Quaternary glacial sedimentary sequences at Mt. Yulong, China

[J]. Journal of Glaciology and Geocryology, 2016386): 1544-1552.

[本文引用: 2]

何则何元庆张志刚.

玉龙雪山冰川沉积序列OSL定年

[J]. 冰川冻土, 2016386): 1544-1552.

[本文引用: 2]

Han ZhujunGuo ShunminXiang Hongfaet al.

Seismotectonic emvironment of occurring the Febuary 3, 1996 Lijiang M=7.0 Earthquake, Yunnan Procince

[J]. Acta Seismologica Sinica, 2004264): 410-418.

[本文引用: 1]

韩竹军虢顺民向宏发.

1996年2月3日云南丽江7.0级地震发生的构造环境

[J]. 地震学报, 2004264): 410-418.

[本文引用: 1]

Du JiankuoXin HuijuanHe Yuanqinget al.

Response of modern monsoon temperate glacier to climate change in Yulong Mountain

[J]. Scientia Geographica Sinica, 2013337): 890-896.

[本文引用: 2]

杜建括辛惠娟何元庆.

玉龙雪山现代季风温冰川对气候变化的响应

[J]. 地理科学, 2013337): 890-896.

[本文引用: 2]

Xin HuijuanHe YuanqingZhang Taoet al.

The features of climate variation and glacier response in Mt. Yulong, southeastern Tibetan Plateau

[J]. Advances in Earth Science, 20132811): 1257-1268.

[本文引用: 1]

辛惠娟何元庆张涛.

青藏高原东南缘丽江玉龙雪山气候变化特征及其对冰川变化的影响

[J]. 地球科学进展, 20132811): 1257-1268.

[本文引用: 1]

He YuanqingZhang Dian.

Climatic warming is the major reason for glacier retreat on Mt. Yulong, China

[J]. Journal of Glaciology and Geocryology, 2004262): 230-231.

[本文引用: 1]

何元庆章典.

气候变暖是玉龙雪山冰川退缩的主要原因

[J]. 冰川冻土, 2004262): 230-231.

[本文引用: 1]

Ming Qingzhong.

The Quaternary glaciation in Yu-long Mountains

[J]. Journal of Yunnan Normal University (Natural Sciences Edition), 1996163): 94-104.

[本文引用: 1]

明庆忠.

滇西北玉龙山第四纪冰川作用的探讨

[J]. 云南师范大学学报(自然科学版), 1996163): 94-104.

[本文引用: 1]

Wu HaizhongZhang YongshuangHu Daogonget al.

Exploration of the late quaternary normal faulting and its kinetic mechanism in the Haba-Yulong Xueshan east rift, Northwest Yunnan

[J]. Science in China: Series D Earth Sciences, 20083811): 1361-1375.

[本文引用: 2]

吴中海张永双胡道功.

滇西北哈巴-玉龙雪山东麓断裂的晚第四纪正断层作用及其动力学机制探讨

[J]. 中国科学(D辑: 地球科学), 20083811): 1361-1375.

[本文引用: 2]

Zhang NingningHe YuanqingHe Xianzhonget al.

The analysis of icefall at Mt. Yulong

[J]. Journal of Mountain Science, 2007254): 412-418.

[本文引用: 3]

张宁宁何元庆和献中.

玉龙雪山冰川崩塌成因分析

[J]. 山地学报, 2007254): 412-418.

[本文引用: 3]

Ming QingzhongJin Cairui.

Neotectonic movement in the Yulong Mountains

[J]. Journal of Central China Normal University (Natural Sciences), 1991252): 97-101.

[本文引用: 1]

明庆忠景才瑞.

滇西北玉龙山新构造运动研究

[J]. 华中师范大学学报(自然科学版), 1991252): 97-101.

[本文引用: 1]

Deline PChiarle MMortara G.

The frontal ice avalanche of Frebouge Glacier (Mont Blanc Massif, Valley of Aosta, NW Italy) on 18 September 2002

[J]. Geografia Fisica e Dinamica Quaternaria, 200225101-104.

[本文引用: 1]

Shugar D HClague J J.

The sedimentology and geomorphology of rock avalanche deposits on glaciers

[J]. Sedimentology, 2011587): 1762-1783.

[本文引用: 1]

Hungr OEvans S.

Entrainment of debris in rock avalanches: an analysis of a long run-out mechanism

[J]. GSA Bulletin, 20041169/10): 1240-1252.

[本文引用: 1]

Dufresne AWolken G JHibert Cet al.

The 2016 Lamplugh rock avalanche, Alaska: deposit structures and emplacement dynamics

[J]. Landslides, 20191612): 2301-2319.

[本文引用: 1]

Li JiachunMeng XiangruiHu Shunzhonget al.

Susceptibility assessment of post-earthquake landslide and timeliness research

[J/OL]. Journal of China West Normal University (Natural Sciences), 20221-11. [2022-09-03]. .

[本文引用: 1]

李佳春孟祥瑞胡顺忠.

震后滑坡易发性评价及其时效性研究

[J]. 西华师范大学学报(自然科学版), 20221-11. [2022-09-03]. .

[本文引用: 1]

Fan XScaringi GKorup Oet al.

Earthquake-induced chains of geologic hazards: patterns, mechanisms, and impacts

[J]. Reviews of Geophysics, 2019572): 421-503.

[本文引用: 1]

Petrakov D AChernomorets S SEvans S Get al.

Catastrophic glacial multi-phase mass movements: a special type of glacial hazard

[C]//Advances in Geosciences. Copernicus GmbH2008211-218.

[本文引用: 1]

Dunning S AMitchell W ARosser N Jet al.

The Hattian Bala rock avalanche and associated landslides triggered by the Kashmir Earthquake of 8 October 2005

[J]. Engineering Geology, 2007933/4): 130-144.

[本文引用: 1]

Huangfu GangShi ShaoxianSu Youjinet al.

Study on seismicity in Yunnan in the 20th century

[J]. Journal of Seismological Research, 2000231): 1-9.

[本文引用: 1]

皇甫岗石绍先苏有锦.

20世纪云南地震活动研究

[J]. 地震研究, 2000231): 1-9.

[本文引用: 1]

Tang ChuanHuang ChuxingWan Ye.

Lijiang earthquake and the incuced rockfalls and slumps in Yunnan

[J]. Journal of Natural Disasters, 199763): 78-86.

[本文引用: 1]

唐川黄楚兴万晔.

云南省丽江大地震及其诱发的崩塌滑坡灾害特征

[J]. 自然灾害学报, 199763): 78-86.

[本文引用: 1]

Yin GongmingSu GangDing Ruiet al.

Kinematic property of the eastern piedmont fault of Yulong Mountains and its implication for geomorphology in Yunnan, southwest of China

[J]. Quaternary Sciences, 2017372): 250-259.

[本文引用: 2]

尹功明苏刚丁锐.

云南玉龙雪山东麓断层的运动性质及其地貌意义

[J]. 第四纪研究, 2017372): 250-259.

[本文引用: 2]

Fischer LKaeaeb AHuggel Cet al.

Geology, glacier retreat and permafrost degradation as controlling factors of slope instabilities in a high-mountain rock wall: the Monte Rosa east face

[J]. Natural Hazards and Earth System Sciences, 200665): 761-772.

[本文引用: 1]

Du Jiankuo.

The research of glacier change in the Yulong Snow Mountains based on RS and observation data

[D]. LanzhouLanzhou University2011.

[本文引用: 1]

杜建括.

基于遥感与实测的玉龙雪山冰川变化

[D]. 兰州兰州大学2011.

[本文引用: 1]

Gruber SHaeberli W.

Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change

[J]. Journal of Geophysical Research: Earth Surface, 2007112F02S18.

[本文引用: 3]

Hasler AGruber SBeutel J.

Kinematics of steep bedrock permafrost

[J]. Journal of Geophysical Research: Earth Surface, 2012117F01016.

[本文引用: 1]

Faillettaz JFunk MVincent C.

Avalanching glacier instabilities: review on processes and early warning perspectives

[J]. Reviews of Geophysics, 2015532): 203-224.

[本文引用: 1]

Strom ALi LLan H.

Rock avalanche mobility: optimal characterization and the effects of confinement

[J]. Landslides, 2019168): 1437-1452.

[本文引用: 2]

Manzella ILabiouse V.

Flow experiments with gravel and blocks at small scale to investigate parameters and mechanisms involved in rock avalanches

[J]. Engineering Geology, 20091091/2): 146-158.

[本文引用: 1]

Manzella ILabiouse V.

Empirical and analytical analyses of laboratory granular flows to investigate rock avalanche propagation

[J]. Landslides, 2013101): 23-36.

[本文引用: 1]

Zeng QZhu JLiao Let al.

High mobility of the channelized ancient Linka rock avalanche within the Bangong-Nujiang suture zone, SE Tibetan Plateau

[J]. Engineering Geology, 2021282105999.

[本文引用: 1]

Hu XiaoboFan XiaoyiTian Shujunet al.

Influence of channel deflection on the movement of a flowing landslide

[J]. Mountain Research, 20193): 371-381.

[本文引用: 1]

胡晓波樊晓一田述军.

沟道偏转地形对滑坡碎屑流运动的影响研究

[J]. 山地学报, 2019373): 371-381.

[本文引用: 1]

Imre BLaue JSpringman S M.

Fractal fragmentation of rocks within sturzstroms: insight derived from physical experiments within the ETH geotechnical drum centrifuge

[J]. Granular Matter, 2010123): 267-285.

[本文引用: 1]

/