冰川冻土, 2021, 43(5): 1344-1353 doi: 10.7522/j.issn.1000-0240.2021.0088

冰冻圈与全球变化

氧同位素示踪夏季北冰洋(62.3°~74.7° N)大气硝酸盐形成途径的研究

贺鹏真,1,2, 谢周清,1,3

1.中国科学技术大学 极地环境与全球变化安徽省重点实验室,安徽 合肥 230026

2.皖西学院 环境与旅游学院,安徽 六安 237012

3.中国科学院 城市环境研究所,福建 厦门 361021

Using oxygen isotopes to trace the formation pathways of atmospheric nitrate over summer Arctic Ocean (62.3°~74.7° N)

HE Pengzhen,1,2, XIE Zhouqing,1,3

1.Anhui Province Key Laboratory of Polar Environment and Global Change,University of Science and Technology of China,Hefei 230026,China

2.School of Environment and Tourism,West Anhui University,Lu’an 237012,Anhui,China

3.Institute of Urban Environment,Chinese Academy of Sciences,Xiamen 361021,Fujian,China

通讯作者: 谢周清,教授,主要从事气候变化和大气化学研究. E-mail: zqxie@ustc.edu.cn

编委: 周成林

收稿日期: 2021-07-08   修回日期: 2021-10-04  

基金资助: 国家自然科学基金项目.  41941014.  41676173
自然资源部项目.  IRASCC2020-2022-01-01-01
安徽省自然科学基金青年项目.  2008085QD184
皖西学院高层次人才科研启动资金项目.  WGKQ202001007

Received: 2021-07-08   Revised: 2021-10-04  

作者简介 About authors

贺鹏真,讲师,主要从事气溶胶大气化学研究.E-mail:hpz@mail.ustc.edu.cn , E-mail:hpz@mail.ustc.edu.cn

摘要

大气硝酸盐(包括颗粒态硝酸盐和气态硝酸)是一种重要的含氮物质,在北冰洋氮的生物地球化学循环中起着重要作用。然而,目前关于北冰洋上大气硝酸盐形成机制的研究较少,限制了对该地区氮氧化物(NOX)到硝酸盐相关大气化学过程的理解。作为2012年夏季中国第五次北极科学考察的内容之一,本研究采集了科考航线上的大气气溶胶样品,并对北冰洋航段(62.3°~74.7° N)上样品中硝酸盐的氮氧同位素(δ15N,δ17O和δ18O)进行了分析以研究该区域大气硝酸盐的形成过程。观测到的Δ17O(NO3)变化范围为21.7‰~28.8‰,均值为(25.4±2.7)‰;δ15N(NO3)变化范为是-7.5‰~0.8‰,均值为(-4.2±3.0)‰。整体上,Δ17O(NO3)与采样纬度呈现相反的变化趋势,与夜间时长和O3浓度呈现相似的变化趋势;δ15N(NO3)与气温呈现相反的变化趋势。基于化学动力学的分析表明,Δ17O(NO3)的变化可能主要反映的是NO2+OH、N2O5+H2O(aq)、NO3+HC/DMS、NO3+H2O(aq)、XNO3+H2O(aq)(X=Br、Cl、I)等硝酸盐生成途径的变化。基于Δ17O(NO3)的计算表明:低Δ17O(NO3)样品[Δ17O(NO3)=21.7‰~24.5‰,66.2°~74.7° N]的主导反应为NO2+OH,其对硝酸盐的可能平均贡献是68%~81%;对于高Δ17O(NO3)样品[Δ17O(NO3)=27.5‰~28.8‰,62.3°~69.9° N],NO3+HC/DMS、NO3+H2O(aq)和XNO3+H2O(aq)三者一起的贡献最高,可达35%~50%。结合BrO柱浓度的分析表明,XNO3+H2O(aq)反应对高Δ17O(NO3)样品的作用可能不可忽略,该作用有待结合大气化学模型进一步探索。

关键词: 北极 ; 气溶胶 ; 硝酸盐 ; 形成途径 ; 氧同位素

Abstract

Atmospheric nitrate (particulate nitrate + gaseous HNO3) plays an essential role in the biogeochemical cycle of nitrogen in the Arctic region. However, there are poor studies on the formation mechanisms of atmospheric nitrate over the Arctic Ocean, which limits our understanding of atmospheric chemical processes related to nitrogen oxides (NOX=NO+NO2) and nitrate in this area. As part of 5th Chinese National Arctic Research Expedition (CHINARE) in the summer of 2012, aerosol filter samples were collected and nitrogen and oxygen isotopes of nitrate (δ15N, δ17O and δ18O) in the filter samples in 62.3°~74.7° N were analyzed to trace the formation pathways of atmospheric nitrate over the Arctic Ocean. The observed daily Δ17O(NO3) (=δ17O–0.52δ18O) varied from 21.7‰ to 28.8‰ with the mean of (25.4±2.7)‰ and δ15N(NO3) ranged from -7.5‰ to 0.8‰ with the mean of (-4.2±3.0)‰. Generally speaking, Δ17O(NO3) showed a opposite trend with the sampling latitude, and a similar trend with the nighttime hours and O3 concentration. While δ15N(NO3) showed the opposite trend with air temperature. Chemical kinetics calculations show that the variation of Δ17O(NO3) may be mainly determined by the role of different pathways in nitrate production rather than the relative importance of O3 and XO (X=Br, Cl and I) in NOX cycling, the latter was estimated to be 0.81~0.90 with the mean of 0.85±0.03. Further analysis based on Δ17O(NO3) showed that NO2+OH pathway dominated nitrate production for samples with low Δ17O(NO3) (=21.7‰~24.5‰, 66.2°~74.7° N), with the mean possible contribution of 68%~81%. For samples with relatively high Δ17O(NO3) (=27.5‰~28.8‰, 62.3°~69.9° N), the together role of NO3+HC/DMS, NO3+H2O(aq) and XNO3+H2O(aq) are the most important, with the mean possible contribution of 35%~50%. Combined with the analysis of BrO column concentrations, it was found that the role of XNO3+H2O(aq) in nitrate production cannot be ignored for high Δ17O(NO3) samples (e.g., Δ17O=28.8‰), the role of which needs to be further explored with the combination of atmospheric chemistry model in future studies.

Keywords: Arctic ; aerosol ; nitrate ; formation mechanisms ; oxygen isotopes

PDF (4300KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

贺鹏真, 谢周清. 氧同位素示踪夏季北冰洋(62.3°~74.7° N)大气硝酸盐形成途径的研究[J]. 冰川冻土, 2021, 43(5): 1344-1353 doi:10.7522/j.issn.1000-0240.2021.0088

HE Pengzhen, XIE Zhouqing. Using oxygen isotopes to trace the formation pathways of atmospheric nitrate over summer Arctic Ocean (62.3°~74.7° N)[J]. Journal of Glaciology and Geocryology, 2021, 43(5): 1344-1353 doi:10.7522/j.issn.1000-0240.2021.0088

0 引言

北极作为全球气温升高最快的地区之一1-2,冰雪消融所带来的潜在物质循环变化受到国内外广泛关注3-4。大气硝酸盐(包括颗粒态硝酸盐和气态硝酸)是一种重要的含氮物质,由于溶解度高易附着到液滴或颗粒物表面,从而沉降到积雪、海冰等冰冻圈要素中,并随着冰雪消融进入到海水中,对北极海洋生态系统初级生产力起到调节作用4-5。因此,大气硝酸盐在北极氮的生物地球化学循环中起着不可忽视的作用。大气中硝酸盐主要来自于氮氧化物(NOX=NO+NO2)的转化过程6-7。该过程涉及到NOX的循环、氧化以及气粒转化等众多反应(图1),不仅关系到氮的生物地球化学循环,区域空气质量(如北极霾8),还会引起臭氧(O3)、OH自由基等大气氧化剂分布的变化。因此,研究北极地区NOX到硝酸盐的大气转化过程具有重要意义。

图1

图1   全球尺度上大气硝酸盐形成途径简图(括号中数字为NO到NO2以及NO2到HNO3过程中各反应途径的全球年均贡献百分比7。X代表元素Br、Cl和I,HC和DMS代表碳氢化合物和二甲基硫,MTN和ISOP分别代表单萜和异戊二烯。灰色阴影区域代表只发生在夜间硝酸盐的形成途径,黄色阴影区域代表只发生在白天的硝酸盐的形成途径)

Fig.1   The diagram of nitrate formation pathways in global scale (Numbers in the brackets show the global annual-mean contribution to NO2 and nitrate formation from model7. X represents Cl, Br and I, HC and DMS represents hydrocarbons and dimethyl sulfide, respectively. MTN and ISOP represents monoterpenes and isoprene, respectively. The grey and yellow areas represent nitrate formation pathways that only significant in nighttime and in daytime, respectively)


在NOX到硝酸盐的转化过程中,各反应物的氧同位素特征(δ17O和δ18O)会转移到产物中,从而为识别不同反应途径的相对重要性提供有用信息9。尤其是硝酸盐的过量17O(Δ17O=δ17O–0.52δ18O),其产生之后不会随质量分馏过程而改变10,能为探索硝酸盐的形成机制提供高精度的约束条件11。如表1所示,对于给定的α值(即O3和XO 氧化在NO到NO2过程的相对重要性),NO+RO2反应生成的RONO2水解(R1)、NO+HO2(R2)所产生的Δ17O(NO3)最低,均为13α‰;其次是NO2+OH(R3)和NO2水解(R4),Δ17O(NO3)均为26α‰;再次是N2O5水解(R5),Δ17O(NO3)为(26α+6.5)‰;其他反应,如N2O5+Cl(aq)(R6),NO3+HC/DMS(R7),NO3水解(R8),XNO3水解(R9)以及NO3+MTN/ISOP产生的RONO2水解(R10)所产生的Δ17O(NO3)最高,为(26α+13)‰。因此,研究人员可以通过对大气硝酸盐Δ17O的观测来评估相关大气化学过程的重要性711-17

表1   不同反应途径产生的Δ17O(NO3)假设

Table 1  The assumption of Δ17O(NO3) for different nitrate production pathways

序号硝酸盐形成途径Δ17O(NO3a/‰说明
R1RONO2+H2O(aq)13αRONO2来自于NO+RO2
R2NO+HO213α白天反应
R3NO2+OH26α白天反应
R4NO2+H2O26α
R5N2O5+H2O(aq)26α+6.5夜间反应
R6N2O5+Cl(aq)26α+13夜间反应
R7NO3+HC/DMS26α+13夜间反应
R8NO3+H2O(aq)26α+13夜间反应
R9XNO3+H2O(aq)26α+13
R10RONO2+H2O(aq)26α+13

RONO2来自于

NO3+MTN/ISOP

注:a假设Δ17O(O3)=26‰2023,并且O3氧化过程中只有终端氧原子被转移,即Δ17O(O3*)=1.5×Δ17O(O3)=39‰24-25

新窗口打开| 下载CSV


在海洋边界层内,Kamezaki等18在40° S至 68° N的太平洋对大气Δ17O(NO3)和光通量进行了观测,结果表明了NO2+OH反应的重要性;Shi等12对我国南极科学考察航线上采集的气溶胶Δ17O(NO3)进行了观测,发现热带海区的大气硝酸盐主要由NO2+OH反应生成,但随着南向纬度的增加,XNO3+H2O和NO3+DMS反应的重要性升高;Savarino等19在热带海洋边界层基于Δ17O(NO3)的观测和模拟表明BrNO3水解过程不容忽视,对该地区硝酸盐的贡献在20%左右。在南极地区,研究人员对地面站点大气硝酸盐Δ17O的观测范围在23.0‰~43.1‰之间并且结果呈现冬季高夏季低的季节性变化,研究发现这些变化与硝酸盐的形成途径变化有关,与O3Δ17O变化无关20-22;对南极高雪积累率区域冰雪样品Δ17O(NO3)的分析表明其沉积后的分馏效应较小26,主要反映的是沉积时的大气信号27,这为探索历史时期大气化学过程提供了有利保障。在北极地区,国外研究者在巴罗(Barrow: 71.3° N, 156.6° W)、阿尔伯特(Alert: 82.5° N, 62.3° W)、新奥尔松(Ny-Ålesund: 78.7° N, 11.7° E)等地面站点对大气Δ17O(NO3)进行了分析并讨论了春季臭氧损耗事件中BrO对NOX和硝酸盐的影响28-31;Clark等4对82°~89° N北冰洋的海冰,积雪和表层海水中的Δ17O(NO3)进行了分析,评估了大气沉降对海冰硝酸盐的贡献。Geng等15和其他研究者32-34对Summit(72.6° N, 38.5° W)地面站点冰雪样品进行了Δ17O(NO3)分析,评估了其沉积后分馏效应以及历史时期大气氧化过程。对于北冰洋上大气硝酸盐的Δ17O特征,目前鲜有报道。这限制了我们对该地区NOX到硝酸盐相关大气化学过程的理解。

鉴于此,本研究利用在2012年中国第五次北极科学考察航线上收集到的大气气溶胶样品,对夏季北冰洋航段上(62.3°~74.7° N)大气硝酸盐的氮氧同位素(δ15N、δ17O和δ18O)进行了观测并以此为约束条件研究观测期间大气硝酸盐的形成机制。

1 研究方法

1.1 样品采集

本研究所用气溶胶样品采集于2012年中国第五次北极科考航线北冰洋航段上。由于受到采集到的样品量的限制,该航段上采集的大气气溶胶样品中,只有7个样品的样品量满足硝酸盐氮氧同位素的分析条件,这些样品对应的采样时间和经纬度如下表2所示。采样使用的仪器为武汉天虹生产的TH-1000C II大流量气溶胶采样器,流量为 1.05 m3·min–1,滤膜为Whatman石英滤膜。单个滤膜样品的采集时间为24 h。其他大气成分和条件如走航期间臭氧浓度、太阳辐射强度已在先前的研究中进行了报道35

表2   样品采集信息表

Table 2  The information about filter samples

样品采样时间(UTC)纬度范围经度范围夜间时长a/h
107-19—07-2069.0°~70.8° N163.2°~168.5° W1.5
208-06—08-0772.8°~74.7° N1.1°~8.4° E0
308-08—08-0970.8°~73.6° N5.0°~9.2° E2.5
408-11—08-1266.2°~68.0° N0°~5.8° W7.2
508-12—08-1362.8°~65.8° N8.0°~17.6° W7.3
608-13—08-1462.3°~64.2° N8.0°~23.0° W9.6
708-21—08-2267.5°~69.9° N9.4°~18.5° W7.4

注:a以太阳辐射≤5 W·m–2的时长作为夜间时长。

新窗口打开| 下载CSV


1.2 样品分析

硝酸盐氮氧同位素(14N、15N、16O、17O、18O)的测定所采用的方法是细菌反硝化法36,所使用菌种为Pseudomonas aureofaciens,测试分析在华盛顿大学IsoLab实验室完成。主要实验步骤如下:首先,使用超纯水(≥18 MΩ)溶解样品中的硝酸盐并进行过滤。然后,使用反硝化细菌将溶解的NO3转化为N2O。之后将N2O吹扫进入800 ℃的金管中进行热解,并将热解产物N2和O2用气相色谱进行分离。分离后的N2和O2分别被吹入Finnigan DeltaPlus同位素质谱仪进行分析,其中来自N2的质荷比是28和29,来自O2的质荷比是32,33和34。测定结果以δ形式进行表示,δ(‰)=(R样品/R标准-1)×1000,其中R=15N/14N,18O/16O或者17O/16O。对于δ15N,其参考标准是空气中的氮气,对于δ18O和δ17O,其参考标准为维也纳标准平均海水(VSMOW)。计算得到Δ17O(=δ17O-0.52δ18O)。根据实验过程中对国际标准物质IAEANO3、USGS34和USGS35重复测定获得的一倍标准偏差(1SD,n=4),评估得到本方法的δ15N和Δ17O精度分别为0.4‰和0.2‰37-38。分析过程中每个滤膜样品测试3次,取3次测试结果的平均值作为最终结果。

1.3 计算评估

O3和XO氧化在NO到NO2过程的相对重要性(即α值)可由式(1)进行计算:

a=k1NOO3+k2NO[XO]k1NOO3+k2NOXO+k3NOHO2+k4NORO2

式中:k1~k4分别为NO+O3、NO+XO、NO+HO2、NO+RO2的化学反应速率常数;[Y]代表物种Y的大气浓度,对于XO而言,BrO的作用一般是最主要的,因此本研究中只对BrO进行了考虑,具体各参数的信息如表3所示。

表3   NO氧化过程化学动力学计算参数表

Table 3  The chemical kinetics for the oxidation of NO

反应过程反应速率表达式氧化剂浓度(V·V-1反应速率常数k/(molec–1·s–1参考文献
NO+O3k1NOO3O3(21×10-9~39×10-9k1=3.0×10–12×e–1500/T3539
NO+XOk2NOXOBrO(1.3×10-12k2=8.8×10–12×e260/T39-40
NO+HO2k3NOHO2HO2(5.6×10-12k3=3.3×10–12×e270/T3941
NO+RO2k4NORO2RO2(2.8×10-12k4=k33241

新窗口打开| 下载CSV


观测到的Δ17O(NO3)可由式(2)进行解释:

ΔO17(NO3-)=R1R10fRΔO17(NO3-)R

式中:R1~R10为表1中所列反应;Δ17O(NO3R为各反应产生的硝酸盐所具有的Δ17O特征;fR为各反应的相对贡献。

根据前人的模型模拟结果7,反应R3、R5和R7~R9一起贡献了全球硝酸盐的94%,同时这些反应对北极海洋边界层内硝酸盐的形成也最为重要,而其他反应如R1、R2、R4、R6和R10对于北极海洋边界层内的硝酸盐的形成的贡献均很低。因此在评估观测期间各反应途径的相对重要性时,本研究采用了该模拟结果7,即假设:fR1+fR2+fR4+fR6+fR10=6%,之后评估其他各反应的相对重要性。由于观测时间为北极夏季,夜间时间总体较短(表2),夜间反应的作用会受到限制,因此本研究进一步假设观测期间N2O5+H2O(aq)夜间反应的贡献不超过NO2+OH白天反应的贡献,即fR5fR3

2 结果和讨论

2.1 观测结果

图2展示了在北冰洋航段上采集的气溶胶样品中硝酸盐氮氧同位素的观测结果。Δ17O(NO3)为21.7‰~28.8‰,平均值是(25.4±2.7)‰,其中,最低值出现在74° N附近,最高值出现在冰岛近海,与采样纬度呈现相反的变化趋势[图3(a)]。观测期间处于北极夏季,光照时间总体较长[图3(b)]。但当Δ17O(NO3)较高时(样品5~7),对应的夜间时间也较长(表2),显示出夜间反应对北极夏季硝酸盐的形成具有明显的贡献。此时的O3浓度也相对较高[图3(c)],表明O3Δ17O(NO3)变化中起到了重要作用。这是因为高浓度的O3有利于提高O3氧化在NO到NO2转化过程中的占比,也有利于XO、NO3自由基的形成,从而增强R5和R7~R9等高Δ17O(NO3)反应途径的贡献。观测期间δ15N(NO3)的变化范围为-7.5‰~0.8‰,平均值是(-4.2±3.0)‰,与气温呈现相反的变化趋势[图3(d)]。

图2

图2   2012年夏季中国第五次北极科考航线北冰洋航段上气溶胶样品中Δ17O(NO3)和δ15N(NO3)观测结果;图中的经纬度为样品采集期间的中值,背景图中的灰度指示海洋的深浅42

Fig.2   The observation of atmospheric Δ17O(NO3) and δ15N(NO3) along the cruise over the Arctic Ocean during 5th Chinese National Arctic research Expedition in summer 2012; The gray level in the background represents the ocean bathymetry42


图3

图3   观测期间硝酸盐氮氧同位素数据与纬度(a),太阳辐射(b),臭氧(c)和气温(d)的变化趋势

Fig.3   The variation of isotopes with latitudes (a), solar radiation (b), ozone mixing ratio (c) and atmospheric temperature (d) during our observations


在前人关于北极Δ17O(NO3)的研究中,在北冰洋积雪中观测到的Δ17O(NO3)范围为27.1‰~33.5‰4,在Alert站点观测到的气溶胶样品 Δ17O(NO3)冬季春季最高,为32‰左右,夏季最低,为25‰左右,观测到的夏季δ15N(NO3)变化范围较大,从-20‰左右到2‰左右31;前人在Summit站点雪坑中也观测到了Δ17O(NO3)的季节性变化,观测到的雪坑Δ17O(NO3)夏季均值为22.4‰,冬季均值为33.7‰32。本研究的观测结果与这些研究的夏季观测值接近,但低于这些研究在冬季和春季的观测值。这主要是因为北极的冬季处于极夜环境,不利于OH自由基的形成,使得O3成为主要氧化剂32;春季日出后,XO随着一年期海冰融化而爆发式增长,达到一年中的最大值,从而在NOX和硝酸盐的形成中起到主要作用28。而随着夏季的到来,北极进入极昼环境,白天的OH、HO2等自由基的作用增强,夜间反应作用减弱,使得Δ17O(NO3)下降43。需要指出的是,Δ17O(NO3)的变化和差异归根结底是由O3和XO氧化在NO到NO2过程的作用(即α值)以及硝酸盐各生成途径的相对重要性(即fR值)共同决定的,因此在接下来的章节中,本文将围绕α值和fR值的评估展开讨论。

2.2 α值评估

基于NO氧化过程的化学动力学计算表明:对于不同样品,α值的变化范围是0.81~0.90,均值为0.85±0.03,这与前人在夏季北极的评估结果(0.8~0.9)相接近31-32。其中,NO+XO的贡献均值为0.01,与模拟得到的全球年均值相一致7。由表1可知,α变化所引起的Δ17O(NO3)变化幅度最大不超过2.3‰[=26‰×(0.9–0.81)],远低于观测到的Δ17O(NO3)变化幅度(7.1‰)。这表明引起不同样品间Δ17O(NO3)差异的最主要原因可能不是α值的变化而是硝酸盐各生成途径的变化。为方便评估硝酸盐各生成途径的相对重要性(fR值),进一步假定采样期间所有样品对应的α值均为0.85,即计算得到的均值。由此得到表1中反应R1~R2产生的Δ17O(NO3)为11.1‰,R3~R4产生的Δ17O(NO3)为22.1‰,R5产生的Δ17O(NO3)为28.6‰,R6~R10产生的Δ17O(NO3)为35.1‰。

2.3 fR值评估

对于单个样品的Δ17O(NO3),假设有不同的N2O5+H2O(aq)相对重要性(fR5),会有与之对应的NO2+OH相对重要性(fR3)和NO3+HC/DMS、NO3+H2O(aq)和XNO3+H2O(aq)相对重要性(fR7+R8+R9图4)。对于低Δ17O样品[即样品1~4,Δ17O(NO3)=21.7‰~24.5‰,66.2°~74.7° N],评估得到的fR3可能范围分别为50%~72%、93%、71%~82%和58%~76%,平均为68%~81%;fR7+R8+R9可能范围分别为0~22%、0~1%、0~12%和0~18%,平均为0~13%。该结果表明白天的NO2+OH反应主导了样品1~4的硝酸盐形成。尤其是对于样品2,即观测到的Δ17O(NO3)最低时,几乎所有的硝酸盐均由白天的NO2+OH反应所形成(fR3=93%)。这与该样品的纬度最高,采样期间的日照时间最长(表1),且后向轨迹气团均来自于更高纬度地区(图5)相一致。此外,该样品沿途区域很低的BrO浓度[图6(a)]也意味着XNO3水解反应(R9)对硝酸盐的贡献微弱,与计算得到的低fR7+R8+R9相吻合。

图4

图4   基于观测的Δ17O(NO3)评估不同生成途径对硝酸盐的贡献百分比,图中R3、R5、R7~R9分别为NO2+OH、N2O5+H2O(aq)、NO3+HC/DMS、NO3+H2O(aq)和XNO3+H2O(aq),虚线为1:1线

Fig. 4   The estimate of possible fractional contribution of different formation pathways to nitrate production based on Δ17O(NO3), R3, R5, R7~R9 represents NO2+OH, N2O5+H2O(aq), NO3+HC/DMS, NO3+H2O(aq) and XNO3+H2O(aq), respectively. The dash line is for 1:1


图5

图5   特征样品采集期间的气团后向轨迹。图中红色实线为样品2采集期间[最低Δ17O(NO3)=21.7‰,8月6日至7日]的气团后向轨迹,蓝色实线为样品5和6采集期间[最高Δ17O(NO3)=28.1‰~28.8‰, 8月12日至14日]的气团后向轨迹。气团后向轨迹反演时长为5 d,高度为50 m(接近采样点海拔高度),黑色点线为样品采集覆盖的位置,红色点代表城市。该图由TrajStat软件所作44,该软件使用HYSPLIT后向轨迹模式,其中气象场数据来自于美国国家海洋和大气管理局(NOAA),分辨率为1°×1°

Fig. 5   The backward trajectory analysis of air mass during the collection of featured aerosol samples. The red lines represent backward trajectories of air mass during the collection of Sample 2 in August 6—7 when Δ17O(NO3) is the lowest while the blue lines represent backward trajectories of air mass during the collection of Samples 5~6 in August 12—14 when Δ17O(NO3) are the highest. The running time and altitude for each of the backward trajectory analysis is 5 days and 50 m, respectively. The black dot-lines represent locations of the sampling covered, the red dots are cities on land. This figure was drawn by TrajStat44, in which the model of HYSPLIT and meteorological data of 1°×1° from NOAA was used


图6

图6   卫星观测的BrO柱浓度。图中蓝点代表采样点的经纬度中值位置。图片来源于http://www.iup.physikuni-bremen.de/doas/scia_data_browser.htm(2021-07-06 访问),并进行了全局对比度和亮度调整

Fig.6   The vertical column concentration of BrO observed by satellite. The blue dot represents the median location of the filter sampling. The BrO figures were modified fromhttp://www.iup.physik.uni-bremende/doas/scia_data_browser.htm(2021-07-06 accessed)


对于样品5~7,[即高Δ17O样品,Δ17O(NO3)=27.5‰~28.8‰,62.3°~69.9° N],评估得到的fR3可能范围分别为26%~39%、30%~44%和33%~49%,平均为30%~44%;fR7+R8+R9可能范围分别为42%~55%、35%~50%和28%~45%,平均为35%~50%。由此可见,对于样品5~7,NO3+HC/DMS、NO3+H2O(aq)和XNO3+H2O(aq)总体的相对重要性(即fR7+R8+R9)最高。尤其是对于样品5和6,即观测到的Δ17O(NO3)最高的两个样品,NO3+HC/DMS、NO3+H2O(aq)夜间反应和XNO3+H2O(aq)总体的贡献甚至可能达到50%。这与样品5和6的纬度最低,采样时夜间时间长,且后向轨迹气团均来自于更低纬度地区相吻合(图5)。此外,这两个样品沿途相对较高的BrO浓度[图6(b)6(c)]表明,XNO3水解反应(R9)在其中的作用可能无法忽略。以样品5为例[Δ17O(NO3)=28.8‰],计算表明fR5+fR7+R8+R9的可能范围达到了55%~68%。该样品的夜间时长只有 7.3 h,低于日照时长,因此有理由相信该样品的夜间反应的作用可能不会超过白天反应,即fR5+fR7+R8fR3,由此得到fR9fR5+fR7+R8+R9fR3。即便在夜间反应达到与白天反应相同重要性的假设下,计算可知,fR9的可能范围依然可以达到16%~42%。这表明XNO3水解反应在一定条件下对北冰洋大气硝酸盐的形成可能会起到重要作用。

3 结论和展望

本文通过对2012年夏季中国第五次北极科考航线北极航段(62.3°~74.7° N)上大气气溶胶样品中硝酸盐氮氧同位素以及相关环境因子的分析,得到以下主要结论:

(1)观测到的Δ17O(NO3)变化范围是21.7‰~28.8‰,均值是(25.4±2.7)‰;δ15N(NO3)变化范围是–7.5‰~0.8‰,均值是(-4.2±3.0)‰。整体上Δ17O(NO3)与采样纬度呈现相反的变化趋势,与夜间时长和O3浓度呈现相似的变化趋势,δ15N(NO3)与气温呈现相反的变化趋势。

(2)观测期间Δ17O(NO3)变化的主要原因可能不是O3和XO(X=Br、Cl、I)氧化在NO到NO2过程的相对重要性的变化,而是硝酸盐各生成途径的变化。

(3)计算表明:低Δ17O(NO3)样品中[Δ17O(NO3)=21.7‰~24.5‰,66.2~74.7° N],硝酸盐的主导生成途径为NO2+OH,其可能的平均贡献是68%~81%;对于高Δ17O(NO3)样品[Δ17O(NO3)=27.5‰~28.8‰,62.3°~69.9° N],NO3+HC/DMS、NO3+H2O(aq)和XNO3+H2O(aq)三者总体的贡献最高,可能的贡献是35%~50%,结合BrO柱浓度的分析表明,XNO3+H2O(aq)反应在其中的作用可能不可忽略。

受样品量的限制,本研究只对非常有限的气溶胶样品(n=7)进行了硝酸盐氮氧同位素的分析和报道,研究结果有待深入。在接下来的研究中,将通过改进样品采集和分析方案,获得更加充分的同位素数据,并结合大气化学模型以及氮同位素特征,进一步丰富对极地氮的生物地球化学过程的理解。

参考文献

Cai ZiyiYou QinglongChen Delianget al.

Review of changes and impacts of the cryosphere under the background of rapid Arctic warming

[J]. Journal of Glaciology and Geocryology, 2021433): 902-916.

[本文引用: 1]

蔡子怡游庆龙陈德亮.

北极快速增暖背景下冰冻圈变化及其影响研究综述

[J]. 冰川冻土, 2021433): 902-916.

[本文引用: 1]

Wang KangZhang TingjunMu Cuicuiet al.

From the Third Pole to the Arctic: changes and impacts of the climate and cryosphere

[J]. Journal of Glaciology and Geocryology, 2020421): 104-123.

[本文引用: 1]

王康张廷军牟翠翠.

从第三极到北极: 气候与冰冻圈变化及其影响

[J]. 冰川冻土, 2020421): 104-123.

[本文引用: 1]

Ni DingmingKang ShichangZhang Yulanet al.

Spatiotemporal distribution and potential sources of snow mercury in Arctic Alaska during the spring season

[J]. Journal of Glaciology and Geocryology, 2021432): 427-436.

[本文引用: 1]

倪鼎铭康世昌张玉兰.

北极阿拉斯加春季积雪中汞的时空分布及其来源分析

[J]. 冰川冻土, 2021432): 427-436.

[本文引用: 1]

Clark S CGranger JMastorakis Aet al.

An investigation into the origin of nitrate in arctic sea ice

[J]. Global Biogeochemical Cycles, 2020342): e2019GB006279.

[本文引用: 4]

Galloway J NTownsend A RErisman J Wet al.

Transformation of the nitrogen cycle: recent trends, questions, and potential solutions

[J]. Science, 20083205878): 889-892.

[本文引用: 1]

Seinfeld J HPandis S N. Atmospheric chemistry and physics: From air pollution to climate change [M]. 2nd. New JerseyJohn Wiley & Sons2012.

[本文引用: 1]

Alexander BSherwen THolmes C Det al.

Global inorganic nitrate production mechanisms: Comparison of a global model with nitrate isotope observations

[J]. Atmospheric Chemistry and Physics, 2020206): 3859-3877.

[本文引用: 7]

Sharma SBarrie L AMagnusson Eet al.

A factor and trends analysis of multidecadal lower tropospheric observations of arctic aerosol composition, black carbon, ozone, and mercury at alert, canada

[J]. Journal of Geophysical Research-Atmospheres, 201912424): 14133-14161.

[本文引用: 1]

Luo LZhu R GSong C Bet al.

Changes in nitrate accumulation mechanisms as PM2.5 levels increase on the north china plain: A perspective from the dual isotopic compositions of nitrate

[J]. Chemosphere, 2021263: 127915.

[本文引用: 1]

Brenninkmeijer C A MJanssen CKaiser Jet al.

Isotope effects in the chemistry of atmospheric trace compounds

[J]. Chemical Reviews, 200310312): 5125-5161.

[本文引用: 1]

Michalski GScott ZKabiling Met al.

First measurements and modeling of Δ17O in atmospheric nitrate

[J]. Geophysical Research Letters, 20033016): 1870.

[本文引用: 2]

Shi GMa HZhu Zet al.

Using stable isotopes to distinguish atmospheric nitrate production and its contribution to the surface ocean across hemispheres

[J]. Earth and Planetary Science Letters, 2021564: 116914.

[本文引用: 1]

Wang KHattori SKang S Cet al.

Isotopic constraints on the formation pathways and sources of atmospheric nitrate in the mt. Everest region

[J]. Environmental Pollution, 2020267: 115274.

Lin MHattori SWang Ket al.

A complete isotope (δ15N, δ18O, Δ17O) investigation of atmospherically deposited nitrate in glacial-hydrologic systems across the third pole region

[J]. Journal of Geophysical Research-Atmospheres, 202012519): e2019JD031878.

Geng LMurray L TMickley L Jet al.

Isotopic evidence of multiple controls on atmospheric oxidants over climate transitions

[J]. Nature, 20175467656): 133-136.

[本文引用: 1]

Wang Y LSong WYang Wet al.

Influences of atmospheric pollution on the contributions of major oxidation pathways to PM2.5 nitrate formation in Beijing

[J]. Journal of Geophysical Research-Atmospheres, 20191247): 4174-4185.

Chan Y CEvans M JHe P Zet al.

Heterogeneous nitrate production mechanisms in intense haze events in the north china plain

[J]. Journal of Geophysical Research-Atmospheres, 20211269): e2021JD034688.

[本文引用: 1]

Kamezaki KHattori SIwamoto Yet al.

Tracing the sources and formation pathways of atmospheric particulate nitrate over the pacific ocean using stable isotopes

[J]. Atmospheric Environment, 2019209: 152-166.

[本文引用: 1]

Savarino JMorin SErbland Jet al.

Isotopic composition of atmospheric nitrate in a tropical marine boundary layer

[J]. Proceedings of the National Academy of Sciences of the United States of America, 201311044): 17668-17673.

[本文引用: 1]

Ishino SHattori SSavarino Jet al.

Seasonal variations of triple oxygen isotopic compositions of atmospheric sulfate, nitrate, and ozone at dumont d'urville, coastal antarctica

[J]. Atmospheric Chemistry and Physics, 2017175): 3713-3727.

[本文引用: 2]

Savarino JKaiser JMorin Set al.

Nitrogen and oxygen isotopic constraints on the origin of atmospheric nitrate in coastal antarctica

[J]. Atmospheric Chemistry and Physics, 200778): 1925-1945.

Savarino JVicars W CLegrand Met al.

Oxygen isotope mass balance of atmospheric nitrate at dome c, east antarctica, during the opale campaign

[J]. Atmospheric Chemistry and Physics, 2016164): 2659-2673.

[本文引用: 1]

Vicars WCSavarino J.

Quantitative constraints on the 17O-excess (Δ17O) signature of surface ozone: ambient measurements from 50° N to 50° S using the nitrite-coated filter technique

[J]. Geochim Cosmochim Acta, 2014135: 270-287.

[本文引用: 1]

Savarino JBhattacharya S KMorin Set al.

The NO+O3 reaction: a triple oxygen isotope perspective on the reaction dynamics and atmospheric implications for the transfer of the ozone isotope anomaly

[J]. Journal of Chemical Physics, 200812819): 194303.

[本文引用: 1]

Berhanu T ASavarino JBhattacharya S Ket al.

17O excess transfer during the NO2+O3→NO3+O2 reaction

[J]. Journal of Chemical Physics, 20121364): 044311.

[本文引用: 1]

Frey M MSavarino JMorin Set al.

Photolysis imprint in the nitrate stable isotope signal in snow and atmosphere of east antarctica and implications for reactive nitrogen cycling

[J]. Atmospheric Chemistry and Physics, 2009922): 8681-8696.

[本文引用: 1]

Shi GBuffen A MHastings M Get al.

Investigation of post-depositional processing of nitrate in east antarctic snow: Isotopic constraints on photolytic loss, re-oxidation, and source inputs

[J]. Atmospheric Chemistry and Physics, 20151516): 9435-9453.

[本文引用: 1]

Morin SSavarino JBekki Set al.

Major influence of bro on the NOx and nitrate budgets in the arctic spring, inferred from Δ17O(NO3) measurements during ozone depletion events

[J]. Environmental Chemistry, 200744): 238-241.

[本文引用: 2]

Morin SSavarino JBekki Set al.

Signature of arctic surface ozone depletion events in the isotope anomaly (Δ17O) of atmospheric nitrate

[J]. Atmospheric Chemistry and Physics, 20077: 1451-1469.

Morin SSavarino JFrey M Met al.

Comprehensive isotopic composition of atmospheric nitrate in the atlantic ocean boundary layer from 65° S to 79° N

[J]. Journal of Geophysical Research-Atmospheres, 2009114D05303.

Morin SSavarino JFrey M Met al.

Tracing the origin and fate of NOx in the arctic atmosphere using stable isotopes in nitrate

[J]. Science, 20083225902): 730-732.

[本文引用: 3]

Kunasek S AAlexander BSteig E Jet al.

Measurements and modeling of Δ17O of nitrate in snowpits from Summit, Greenland

[J]. Journal of Geophysical Research-Atmospheres, 2008113D24302.

[本文引用: 5]

Fibiger D LDibb J EChen D Xet al.

Analysis of nitrate in the snow and atmosphere at Summit, Greenland: Chemistry and transport

[J]. Journal of Geophysical Research-Atmospheres, 20161219): 5010-5030.

Jiang ZAlexander BSavarino Jet al.

Impacts of the photo-driven post-depositional processing on snow nitrate and its isotopes at Summit, Greenland: a model-based study

[J]. The Cryosphere, 2021159): 4207-4220.

[本文引用: 1]

He P ZBian L EZheng X Det al.

Observation of surface ozone in the marine boundary layer along a cruise through the arctic ocean: from offshore to remote

[J]. Atmospheric Reserch, 2016169: 191-198.

[本文引用: 2]

Kaiser JHastings M GHoulton B Zet al.

Triple oxygen isotope analysis of nitrate using the denitrifier method and thermal decomposition of N2O

[J]. Analytical Chemistry, 2007792): 599-607.

[本文引用: 1]

He P ZXie Z QChi X Yet al.

Atmospheric Δ17O(NO3) reveals nocturnal chemistry dominates nitrate production in Beijing haze

[J]. Atmospheric Chemistry and Physics, 20181819): 14465-14476.

[本文引用: 1]

He P ZXie Z QYu X Wet al.

The observation of isotopic compositions of atmospheric nitrate in shanghai china and its implication for reactive nitrogen chemistry

[J]. Science of the Total Environment, 2020714: 136727.

[本文引用: 1]

Burkholder J BSander S PAbbatt J R Bet al. Chemical kinetics and photochemical data for use in atmospheric studies: evaluation No.

18

[M]. PasadenaJet Propulsion Laboratory2015.

[本文引用: 3]

Liao JHuey L GTanner D Jet al.

Observations of hydroxyl and peroxy radicals and the impact of bro at Summit, Greenland in 2007 and 2008

[J]. Atmospheric Chemistry and Physics, 20111116): 8577-8591.

[本文引用: 1]

Sjostedt S JHuey L GTanner D Jet al.

Observations of hydroxyl and the sum of peroxy radicals at Summit, Greenland during summer 2003

[J]. Atmospheric Environment, 20074124): 5122-5137.

[本文引用: 2]

Schlitzer R.

Ocean data view

[DB/OL]. (2018-01-01)[2021-04-22]. .

URL     [本文引用: 2]

Alexander BHastings M GAllman D Jet al.

Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (Δ17O) of atmospheric nitrate

[J]. Atmospheric Chemistry and Physics, 2009914): 5043-5056.

[本文引用: 1]

Wang Y QZhang X YDraxler R R.

TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data

[J]. Environmental Modelling & Software, 2009248): 938-939.

[本文引用: 2]

/